2,560 research outputs found
A hypersonic research vehicle to develop scramjet engines
Four student design teams produced conceptual designs for a research vehicle to develop the supersonic combustion ramjet (scramjet) engines necessary for efficient hypersonic flight. This research aircraft would provide flight test data for prototype scramjets that is not available in groundbased test facilities. The design specifications call for a research aircraft to be launched from a carrier aircraft at 40,000 feet and a Mach number of 0.8. The aircraft must accelerate to Mach 6 while climbing to a 100,000 foot altitude and then ignite the experimental scramjet engines for acceleration to Mach 10. The research vehicle must then be recovered for another flight. The students responded with four different designs, two piloted waverider configurations, and two unmanned vehicles, one with a blended body-wing configuration, the other with a delta wing shape. All aircraft made use of an engine database provided by the General Electric Aircraft Engine Group; both turbofan ramjet and scramjet engine performance using liquid hydrogen fuel was available. Explained here are the students' conceptual designs and the aerodynamic and propulsion concepts that made their designs feasible
Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines
Single trajectories of magnetic line motion indicate the persistence of a
central protected plasma core, surrounded by a chaotic shell enclosed in a
double-sided transport barrier : the latter is identified as being composed of
two Cantori located on two successive "most-noble" numbers values of the
perturbed safety factor, and forming an internal transport barrier (ITB).
Magnetic lines which succeed to escape across this barrier begin to wander in a
wide chaotic sea extending up to a very robust barrier (as long as L<1) which
is identified mathematically as a robust KAM surface at the plasma edge. In
this case the motion is shown to be intermittent, with long stages of
pseudo-trapping in the chaotic shell, or of sticking around island remnants, as
expected for a continuous time random walk.Comment: TEX file, 84 pages including 32 color figures. Higher quality figures
can be seen on the PDF file at
http://membres.lycos.fr/fusionbfr/JHM/Tokamap/JSP.pd
Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet
An electrostatic lens with three focusing elements in an alternating-gradient
configuration is used to focus a fountain of cesium atoms in their ground
(strong-field-seeking) state. The lens electrodes are shaped to produce only
sextupole plus dipole equipotentials which avoids adding the unnecessary
nonlinear forces present in cylindrical lenses. Defocusing between lenses is
greatly reduced by having all of the main electric fields point in the same
direction and be of nearly equal magnitude. The addition of the third lens gave
us better control of the focusing strength in the two transverse planes and
allowed focusing of the beam to half the image size in both planes. The beam
envelope was calculated for lens voltages selected to produced specific
focusing properties. The calculations, starting from first principles, were
compared with measured beam sizes and found to be in good agreement.
Application to fountain experiments, atomic clocks, and focusing polar
molecules in strong-field-seeking states is discussed.Comment: 8 pages 10 figure
3D modelling of angiogenesis and vascular tumour growth
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
Succinylated Octopamine Ascarosides and a New Pathway of Biogenic Amine Metabolism in Caenorhabditis elegans
The ascarosides, small-molecule signals derived from combinatorial
assembly of primary metabolism-derived building
blocks, play a central role in Caenorhabditis elegans biology and
regulate many aspects of development and behavior in this
model organism as well as in other nematodes. Using HPLCMS/
MS-based targeted metabolomics, we identified novel ascarosides
incorporating a side chain derived from succinylation of
the neurotransmitter octopamine. These compounds, named
osas#2, osas#9, and osas#10, are produced predominantly by L1
larvae, where they serve as part of a dispersal signal, whereas
these ascarosides are largely absent from the metabolomes of
other life stages. Investigating the biogenesis of these octopamine-
derived ascarosides, we found that succinylation represents
a previously unrecognized pathway of biogenic amine
metabolism. At physiological concentrations, the neurotransmitters
serotonin, dopamine, and octopamine are converted to a
large extent into the corresponding succinates, in addition to
the previously described acetates. Chemically, bimodal deactivation
of biogenic amines via acetylation and succinylation parallels
posttranslational modification of proteins via acetylation
and succinylation of L-lysine. Our results reveal a small-molecule
connection between neurotransmitter signaling and
interorganismal regulation of behavior and suggest that ascaroside
biosynthesis is based in part on co-option of degradative
biochemical pathways
Conserved nematode signalling molecules elicit plant defenses and pathogen resistance
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture
Effectiveness of an AIDS and universal infection control precautions program for certified nursing assistants
What do aquaporin knockout studies tell us about fluid transport in epithelia?
The investigation of near-isosmotic water transport in epithelia goes back over 100 years; however, debates over mechanism and pathway remain. Aquaporin (AQP) knockouts have been used by various research groups to test the hypothesis of an osmotic mechanism as well as to explore the paracellular versus transcellular pathway debate. Nonproportional reductions in the water permeability of a water-transporting epithelial cell (e.g., a reduction of around 80–90 %) compared to the reduction in overall water transport rate in the knockout animal (e.g., a reduction of 50–60 %) are commonly found. This nonproportionality has led to controversy over whether AQP knockout studies support or contradict the osmotic mechanism. Arguments raised for and against an interpretation supporting the osmotic mechanism typically have partially specified, implicit, or incorrect assumptions. We present a simple mathematical model of the osmotic mechanism with clear assumptions and, for models based on this mechanism, establish a baseline prediction of AQP knockout studies. We allow for deviations from isotonic/isosmotic conditions and utilize dimensional analysis to reduce the number of parameters that must be considered independently. This enables a single prediction curve to be used for multiple epithelial systems. We find that a simple, transcellular-only osmotic mechanism sufficiently predicts the results of knockout studies and find criticisms of this mechanism to be overstated. We note, however, that AQP knockout studies do not give sufficient information to definitively rule out an additional paracellular pathway
- …
