925 research outputs found

    Dynamics of odor sampling strategies in mice

    Get PDF
    Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty

    Machine learning for automatic prediction of the quality of electrophysiological recordings

    Get PDF
    The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions by a machine learning approach. We define 16 features, such as spike height and width, select the most informative ones using a wrapper method and train a classifier to reproduce the judgement of one of our expert electrophysiologists. Generalisation performance is then assessed on unseen data, classified by the same or by another expert. We observe that the learning machine can be equally, if not more, consistent in its judgements as individual experts amongst each other. Best performance is achieved for a limited number of informative features; the optimal feature set being different from one data set to another. With 80–90% of correct judgements, the performance of the system is very promising within the data sets of each expert but judgments are less reliable when it is used across sets of recordings from different experts. We conclude that the proposed approach is relevant to the selection of electrophysiological recordings, provided parameters are adjusted to different types of experiments and to individual experimenters

    The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response

    Get PDF
    Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. We identified NCKX4, a potassium-dependent Na(+)/Ca(2+) exchanger, as being necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4(-/-) (also known as Slc24a4) mouse OSNs displayed substantially prolonged responses and stronger adaptation. Single-cell electrophysiological analyses revealed that the majority of Na(+)-dependent Ca(2+) exchange in OSNs relevant to sensory transduction is a result of NCKX4 and that Nckx4(-/-) mouse OSNs are deficient in encoding action potentials on repeated stimulation. Olfactory-specific Nckx4(-/-) mice had lower body weights and a reduced ability to locate an odorous source. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Modelfree global tractography

    Get PDF
    © 2018 Elsevier Inc. Tractography based on diffusion-weighted MRI investigates the large scale arrangement of the neurite fibers in brain white matter. It is usually assumed that the signal is a convolution of a fiber specific response function (FRF) with a fiber orientation distribution (FOD). The FOD is the focus of tractography. While in the past the FRF was estimated beforehand and was usually assumed to be fix, more recent approaches estimate the response function during tractography. This work proposes a novel objective function independent of the FRF, just aiming for FOD reconstruction. The objective is integrated into global tractography showing promising results

    A Selective PMCA Inhibitor Does Not Prolong the Electroolfactogram in Mouse

    Get PDF
    Within the cilia of vertebrate olfactory receptor neurons, Ca(2+) accumulates during odor transduction. Termination of the odor response requires removal of this Ca(2+), and prior evidence suggests that both Na(+)/Ca(2+) exchange and plasma membrane Ca(2+)-ATPase (PMCA) contribute to this removal.In intact mouse olfactory epithelium, we measured the time course of termination of the odor-induced field potential. Replacement of mucosal Na(+) with Li(+), which reduces the ability of Na(+)/Ca(2+) exchange to expel Ca(2+), prolonged the termination as expected. However, treating the epithelium with the specific PMCA inhibitor caloxin 1b1 caused no significant increase in the time course of response termination.Under these experimental conditions, PMCA does not contribute detectably to the termination of the odor response

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    • …
    corecore