39 research outputs found

    Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases.

    Get PDF
    Porphyromonas gingivalis (Pg) is a keystone pathogen in the aetiology of chronic periodontitis. However, recent evidence suggests that the bacterium is also able to enter the bloodstream, interact with host cells and tissues, and ultimately contribute to the pathogenesis of cardiovascular disease (CVD). Here we established a novel zebrafish larvae systemic infection model showing that Pg rapidly adheres to and penetrates the zebrafish vascular endothelium causing a dose- and time-dependent mortality with associated development of pericardial oedemas and cardiac damage. The in vivo model was then used to probe the role of Pg expressed gingipain proteases using systemically delivered gingipain-deficient Pg mutants, which displayed significantly reduced zebrafish morbidity and mortality compared to wild-type bacteria. In addition, we used the zebrafish model to show efficacy of a gingipain inhibitor (KYT) on Pg-mediated systemic disease, suggesting its potential use therapeutically. Our data reveal the first real-time in vivo evidence of intracellular Pg within the endothelium of an infection model and establishes that gingipains are crucially linked to systemic disease and potentially contribute to CVD

    On the nature of thiamine triphosphate in Arabidopsis

    No full text
    Vitamin B1is a family of molecules, the most renowned member of which is diphosphorylated thiamine (TDP)-a coenzyme vital for the activity of key enzymes of energy metabolism. Triphosphorylated thiamine derivatives also exist within this family, specifically thiamine triphosphate (TTP) and adenosine thiamine triphosphate (ATTP). They have been investigated primarily in mammalian cells and are thought to act as metabolic messengers but have not received much attention in plants. In this study, we set out to examine for the presence of these triphosphorylated thiamine derivatives in Arabidopsis. We could find TTP in Arabidopsis under standard growth conditions, but we could not detect ATTP. Interestingly, TTP is found primarily in shoot tissue. Drivers of TTP synthesis are light intensity, the proton motive force, as well as TDP content. In plants, TTP accumulates in the organellar powerhouses, the plastids, and mitochondria. Furthermore, in contrast to other B1vitamers, there are strong oscillations in tissue levels of TTP levels over diel periods peaking early during the light period. The elevation of TTP levels during the day appears to be coupled to a photosynthesis-driven process. We propose that TTP may signify TDP sufficiency, particularly in the organellar powerhouses, and discuss our findings in relation to its role
    corecore