86 research outputs found

    Interleukin-8/CXCL8 is a growth factor for human lung cancer cells

    Get PDF
    Interleukin-8/CXCL8 (IL-8) is a chemokine and angiogenic factor. Recently, IL-8 was identified as an autocrine growth factor in several human cancers. Here, we investigated the expression and function of IL-8 in lung cancer cells. The expressions of IL-8 and its receptors, CXCR1 and CXCR2, were examined in a panel of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines. Using reverse transcription–polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay, we found that all NSCLC cell lines tested produced modest or high levels of IL-8 (up to 51 ng ml−1 106 cells−1). Expression of CXCR1 and CXCR2 was found by RT–PCR and flow cytometry in two out of three cell lines. In contrast, SCLC cell lines produced very low or undetectable levels of IL-8, but expressed CXCR1 and CXCR2. We next investigated whether IL-8 could act as an autocrine growth factor in two NSCLC cell lines (H460 and MOR/P) expressing both IL-8 and its receptors. We found that cell proliferation was attenuated by anti-IL-8 neutralising antibody to 71 and 76% in H460 and MOR/P, respectively (P<0.05). Exogenous IL-8 significantly stimulated cell proliferation in four SCLC cell lines tested in a dose-dependent fashion. Cell proliferation was increased by between 18% (P<0.05) and 37% (P<0.05). Stimulation of cell proliferation by IL-8 was also demonstrated by analysis of proliferating cell nuclear antigen expression and cell cycle in H69 cells. Furthermore, we investigated which receptor(s) mediated the mitogenic function of IL-8 in lung cancer cells. We found that cell proliferation was significantly reduced by anti-CXCR1 antibody but not by anti-CXCR2 antibody. In conclusion, IL-8 can act as an autocrine and/or paracrine growth factor for lung cancer cells, and the mitogenic function of IL-8 in lung cancer is mediated mainly by CXCR1 receptor

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia

    NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Get PDF
    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies
    • …
    corecore