42 research outputs found

    Expression analysis of somatic embryogenesis-related SERK, LEC1, VP1 and NiR ortologues in rye (Secale cereale L.)

    Get PDF
    The genetic basis of the regeneration process in cultured immature embryos of rye (Secale cereale L.) was analyzed. The experiments were designed to reveal differences between the in vitro culture responses of two inbred lines: L318 (a high regeneration ability) and L9 (a low potential for regeneration). The rye ortologues of plant genes previously recognized as crucial for somatic embryogenesis and morphogenesis in vitro were identified. Using oligonucleotide primers designed to conserved regions of the genes Somatic Embryogenesis Receptor-like Kinase (SERK), Leafy Cotyledon 1 (LEC1), Viviparous 1 (VP1) and NiR (encoding ferredoxin-nitrite reductase), it was possible to amplify specific homologous sequences from rye RNA by RT-PCR. The transcript levels of these genes were then measured during the in vitro culture of zygotic embryos, and the sites of expression localized. The expression profiles of these genes indicate that their function is likely to be correlated with the in vitro response of rye. In line L9, increased expression of the rye SERK ortologue was observed at most stages during the culture of immature embryos. The suppression of ScSERK expression appears to start after the induction of somatic embryogenesis and lasts up to plant regeneration. The rye ortologues of the LEC1 and VP1 genes may function in a complimentary manner and have a negative effect on the production of the embryogenic callus. The expression of the rye NiR ortologue during in vitro culture reveals its importance in the process of plant regeneration

    A High Density Consensus Map of Rye (Secale cereale L.) Based on DArT Markers

    Get PDF
    L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers.Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers.Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization

    Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential

    Get PDF
    Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.Peer reviewe
    corecore