51 research outputs found

    P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells

    Get PDF
    Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    Sex-specific control of human heart maturation by the progesterone receptor

    Get PDF
    Background: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. Methods: Single nucleus RNA-sequencing (snRNA-seq) of 54,140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA-sequencing and the assay for transposase-accessible chromatin using sequencing (ATAC-seq) were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. Results: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. Conclusions: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.Choon Boon Sim, Belinda Phipson, Mark Ziemann, Haloom Rafehi, Richard J. Mills, Kevin I. Watt ... et al

    Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3

    Get PDF
    Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements

    Current perspectives in Set7 mediated stem cell differentiation.

    Get PDF
    Set7 is a key regulatory enzyme involved in the methylation of lysine residues of histone and non-histone proteins. This lysine methyltransferase is induced during stem cell differentiation and regulates lineage specific gene transcription and cell fate. In this article we discuss recent experimental evidence identifying regulatory targets under the control of Set7 as well as emerging evidence of regulation in stem cell differentiation. Furthermore, we discuss the function of non-coding RNAs regulated by Set7 implicated in cell plasticity

    Rapid diagnosis of spinocerebellar ataxia 36 in a three-generation family using short-read whole-genome sequencing data

    No full text
    Background: Spinocerebellar ataxias are often caused by expansions of short tandem repeats. Recent methodological advances have made repeat expansion (RE) detection with whole-genome sequencing (WGS) feasible. Objectives: The objective of this study was to determine the genetic basis of ataxia in a multigenerational Australian pedigree with autosomal-dominant inheritance. Methods and results: WGS was performed on 3 affected relatives. The sequence data were screened for known pathogenic REs using 2 RE detection tools: exSTRa and ExpansionHunter. This screen provided a clear and rapid diagnosis (NOP56. Conclusions: The diagnosis of rare ataxias caused by REs is highly feasible and cost-effective with WGS. We propose that WGS could potentially be implemented as the frontline, cost-effective methodology for the molecular testing of individuals with a clinical diagnosis of ataxia

    Investigation of the biological properties of cinnulin PF in the context of diabetes: mechanistic insights by genome-wide mRNA-Seq analysis

    Get PDF
    The accumulating evidence of the beneficial effects of cinnamon (Cinnamomum burmanni) in type-2 diabetes, a chronic age-associated disease, has prompted the commercialisation of various supplemental forms of the spice. One such supplement, Cinnulin PF&amp;dagger;, represents the water soluble fraction containing relatively high levels of the double-linked procyanidin type-A polymers of flavanoids. The overall aim of this study was to utilize genome-wide mRNA-Seq analysis to characterise the changes in gene expression caused by Cinnulin PF in immortalised human keratinocytes and microvascular endothelial cells, which are relevant with respect to diabetic complications. In summary, our findings provide insights into the mechanisms of action of Cinnulin PF in diabetes and diabetic complications. More generally, we identify relevant candidate genes which could provide the basis for further investigation

    Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y<sub>2</sub> Receptor

    No full text
    A homology model of the nucleotide-activated P2Y<sub>2</sub>R was created based on the X-ray structures of the P2Y<sub>1</sub> receptor. Docking studies were performed, and receptor mutants were created to probe the identified binding interactions. Mutation of residues predicted to interact with the ribose (Arg110) and the phosphates of the nucleotide agonists (Arg265, Arg292) or that contribute indirectly to binding (Tyr288) abolished activity. The Y114F, R194A, and F261A mutations led to inactivity of diadenosine tetraphosphate and to a reduced response of UTP. Significant reduction in agonist potency was observed for all other receptor mutants (Phe111, His184, Ser193, Phe261, Tyr268, Tyr269) predicted to be involved in agonist recognition. An ionic lock between Asp185 and Arg292 that is probably involved in receptor activation interacts with the phosphate groups. The antagonist AR-C118925 and anthraquinones likely bind to the orthosteric site. The updated homology models will be useful for virtual screening and drug design
    corecore