22 research outputs found

    A capacity management tool for a portfolio of industrialization projects

    Get PDF
    The management of a project portfolio is a complex decision process because it encompasses the achievement of multiple objectives. A critical point that increases the complexity in the decision-making process of a portfolio manager is the allocation of human resources to manage the projects of the portfolio, project managers, which is crucial to the organization’s performance. In this case, the project manager can manage more than one project simultaneously and it is necessary to assign project managers to the projects, considering that project activities have an amount of work to be accomplished. The main objective of this work was to provide support for this capacity management problem, which aims to provide an easier decision-making process for the capacity management of an industrialization project portfolio. Therefore, it was developed: a hybrid model that creates a schedule respecting the resource constraints and the established due dates; a recommendation system that considers project managers’ allocation and projects requirements; and, an automatic status report that allows identifying the project portfolio capacity usage.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 39479; Funding Reference: POCI-01-0247-FEDER-39479]

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Do agile managed information systems projects fail due to a lack of emotional intelligence?

    Get PDF
    YesAgile development methodologies (ADM) have become a widely implemented project management approach in Information Systems (IS). Yet, along with its growing popularity, the amount of concerns raised in regard to human related challenges caused by applyingADMare rapidly increasing. Nevertheless, the extant scholarly literature has neglected to identify the primary origins and reasons of these challenges. The purpose of this study is therefore to examine if these human related challenges are related to a lack of Emotional Intelligence (EI) by means of a quantitative approach. Froma sample of 194 agile practitioners, EI was found to be significantly correlated to human related challenges in agile teams in terms of anxiety, motivation, mutual trust and communication competence. Hence, these findings offer important new knowledge for IS-scholars, project managers and human resource practitioners, about the vital role of EI for staffing and training of agile managed IS-projects

    BSC-EFQM based approach for performance benchmarking in construction industry

    No full text
    There is a great need in construction industry for identification of common set of KPIs, in order to systematically control its performance. This paper explains the difference between various management control systems and their use in performance practice. It elaborates a new, integrated, model for performance management in a construction company, based on EFQM -excellence model and Balanced Scorecard (BSC) principles in conjunction with modern control theory. The model uses three types of performance measures: leading (KPI), lagging (KPO) and perceptive (PerM) indicators, across four dimension of BSC and nine sub-dimensions of EFQM model. The indicators are distributed in six dimensions of KPI breakdown structure (KPIBS). Thus, the results of performance measurement, based on KPIBS, are used as input information for benchmarking process of a construction company. The paper shows such example, based on the first level of benchmarking, and elaborates its results. It concludes with final assessment of the model, gives recommendations and sets new objectives for future research
    corecore