417 research outputs found
Calculations of the A_1 phonon frequency in photoexcited Tellurium
Calculations of the A_1 phonon frequency in photoexcited tellurium are
presented. The phonon frequency as a function of photoexcited carrier density
and phonon amplitude is determined. Recent pump probe experiments are
interpreted in the light of these calculatons. It is proposed that, in
conjunction with measurements of the phonon period in ultra-fast pump-probe
reflectivity experiments, the calculated frequency shifts can be used to infer
the evolution of the density of photoexcited carriers on a sub-picosecond
time-scale.Comment: 15 pages Latex, 3 postscript figure
Coulomb Explosion and Thermal Spikes
A fast ion penetrating a solid creates a track of excitations. This can
produce displacements seen as an etched track, a process initially used to
detect energetic particles but now used to alter materials. From the seminal
papers by Fleischer et al. [Phys. Rev. 156, 353 (1967)] to the present [C.
Trautmann, S. Klaumunzer and H. Trinkaus, Phys. Rev. Lett. 85, 3648 (2000)],
`Coulomb explosion' and thermal spike models are treated as conflicting models
for describing ion track effects. Here molecular dynamics simulations of
electronic-sputtering, a surface manifestation of ion track formation, show
that `Coulomb explosion' produces a `heat' spike so that these are early and
late aspects of the same process. Therefore, differences in scaling are due to
the use of incomplete spike models.Comment: Submitted to PRL. 4 pages, 3 figures. For related movies see:
http://dirac.ms.virginia.edu/~emb3t/coulomb/coulomb.html PACS added in new
versio
Leibniz Seminorms and Best Approximation from C*-subalgebras
We show that if B is a C*-subalgebra of a C*-algebra A such that B contains a
bounded approximate identity for A, and if L is the pull-back to A of the
quotient norm on A/B, then L is strongly Leibniz. In connection with this
situation we study certain aspects of best approximation of elements of a
unital C*-algebra by elements of a unital C*-subalgebra.Comment: 24 pages. Intended for the proceedings of the conference "Operator
Algebras and Related Topics". v2: added a corollary to the main theorem, plus
several minor improvements v3: much simplified proof of a key lemma,
corollary to main theorem added v4: Many minor improvements. Section numbers
increased by
Periodic orbit theory for realistic cluster potentials: The leptodermous expansion
The formation of supershells observed in large metal clusters can be
qualitatively understood from a periodic-orbit-expansion for a spherical
cavity. To describe the changes in the supershell structure for different
materials, one has, however, to go beyond that simple model. We show how
periodic-orbit-expansions for realistic cluster potentials can be derived by
expanding only the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous
expansion of Woods-Saxon potentials and show that it describes the shift of the
supershells as the surface of a cluster potential gets softer. As a byproduct
of our work, we find that the electronic shell and supershell structure is not
affected by a lattice contraction, which might be present in small clusters.Comment: 15 pages RevTex, 11 eps figures, additional information at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/users/koch/Diss
The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD
© 2018, The Author(s). Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The “human smoking” gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of “severe COPD” (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10−26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10−12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD
On the 3n+l Quantum Number in the Cluster Problem
It has recently been suggested that an exactly solvable problem characterized
by a new quantum number may underlie the electronic shell structure observed in
the mass spectra of medium-sized sodium clusters. We investigate whether the
conjectured quantum number 3n+l bears a similarity to the quantum numbers n+l
and 2n+l, which characterize the hydrogen problem and the isotropic harmonic
oscillator in three dimensions.Comment: 8 pages, revtex, 4 eps figures included, to be published in
Phys.Rev.A, additional material available at
http://radix2.mpi-stuttgart.mpg.de/koch/Diss
The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD
Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The 'human smoking' gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of 'severe COPD' (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10-26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10-12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD
Interface Excitons in Krmnen Clusters : The Role of Electron Affinity in the Formation of Electronic Structure
The formation of the electronic structure of small Kr_m clusters (m<150)
embedded inside Ne_N clusters (1200<N<7500) has been investigated with the help
of fluorescence excitation spectroscopy using synchrotron radiation.
Electronically excited states, assigned to excitons at the Ne/Kr interface, 1i
and 1'i were observed. The absorption bands, which are related to the lowest
spin-orbit split atomic Kr 3P1 and 1P1 states, initially appear and shift
towards lower energy when the krypton cluster size m increases. The
characteristic bulk 1t and 1't excitons appear in the spectra, when the cluster
radius exceeds some critical value, R_cl>Delta_1i . Kr clusters comprising up
to 70 atoms do not exhibit bulk absorption bands. We suggest that this is due
to the penetration of the interface excitons into the Kr_m cluster volume,
because of the negative electron affinity of surrounding Ne atoms. From the
energy shift of the interface absorption bands with cluster size an
unexpectedly large penetration depth of delta_1i =7.0+/-0.1 A is estimated,
which can be explained by the interplay between the electron affinities of the
guest and the host cluster
Cigarette smoke exposure facilitates allergic sensitization in mice
BACKGROUND: Active and passive smoking are considered as risk factors for asthma development. The mechanisms involved are currently unexplained. OBJECTIVE: The aim of this study was to determine if cigarette smoke exposure could facilitate primary allergic sensitization. METHODS: BALB/c mice were exposed to aerosolized ovalbumin (OVA) combined with air or tobacco smoke (4 exposures/day) daily for three weeks. Serology, lung cytopathology, cytokine profiles in bronchoalveolar lavage fluid (BALF) and on mediastinal lymph node cultures as well as lung function tests were performed after the last exposure. The natural history and the immune memory of allergic sensitization were studied with in vivo recall experiments. RESULTS: Exposure to OVA induced a small increase in OVA-specific serum IgE as compared with exposure to PBS (P < 0.05), while no inflammatory reaction was observed in the airways. Exposure to cigarette smoke did not induce IgE, but was characterized by a small but significant neutrophilic inflammatory reaction. Combining OVA with cigarette smoke not only induced a significant increase in OVA-specific IgE but also a distinct eosinophil and goblet cell enriched airway inflammation albeit that airway hyperresponsiveness was not evidenced. FACS analysis showed in these mice increases in dendritic cells (DC) and CD4(+ )T-lymphocytes along with a marked increase in IL-5 measured in the supernatant of lymph node cell cultures. Immune memory experiments evidenced the transient nature of these phenomena. CONCLUSION: In this study we show that mainstream cigarette smoke temporary disrupts the normal lung homeostatic tolerance to innocuous inhaled allergens, thereby inducing primary allergic sensitization. This is characterized not only by the development of persistent IgE, but also by the emergence of an eosinophil rich pulmonary inflammatory reaction
Interspecific competition delays recovery of Daphnia spp. populations from pesticide stress
Xenobiotics alter the balance of competition between species and induce shifts in community composition. However, little is known about how these alterations affect the recovery of sensitive taxa. We exposed zooplankton communities to esfenvalerate (0.03, 0.3, and 3 μg/L) in outdoor microcosms and investigated the long-term effects on populations of Daphnia spp. To cover a broad and realistic range of environmental conditions, we established 96 microcosms with different treatments of shading and periodic harvesting. Populations of Daphnia spp. decreased in abundance for more than 8 weeks after contamination at 0.3 and 3 μg/L esfenvalerate. The period required for recovery at 0.3 and 3 μg/L was more than eight and three times longer, respectively, than the recovery period that was predicted on the basis of the life cycle of Daphnia spp. without considering the environmental context. We found that the recovery of sensitive Daphnia spp. populations depended on the initial pesticide survival and the related increase of less sensitive, competing taxa. We assert that this increase in the abundance of competing species, as well as sub-lethal effects of esfenvalerate, caused the unexpectedly prolonged effects of esfenvalerate on populations of Daphnia spp. We conclude that assessing biotic interactions is essential to understand and hence predict the effects and recovery from toxicant stress in communities
- …