367 research outputs found
Ab initio calculations of the {33}S 3p4 3P_J and {33}S- / {37,35}Cl 3p5 2Po_J hyperfine structures
We present highly correlated multi-configuration Hartree-Fock (MCHF)
calculations of the hyperfine structure of the 3p5 2Po_J levels of {33}S- and
{35,37}Cl. We obtain a good agreement with observation. The hyperfine structure
of the neutral sulfur {33}S 3p4 3P_J lowest multiplet that has never been
measured to the knowledge of the authors, is also estimated theoretically. We
discuss some interesting observations made on the description of the atomic
core in MCHF theory.Comment: 14 pages, 2 figures (10 subfigures
Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations
Multiconfiguration expansions frequently target valence correlation and
correlation between valence electrons and the outermost core electrons.
Correlation within the core is often neglected. A large orbital basis is needed
to saturate both the valence and core-valence correlation effects. This in turn
leads to huge numbers of CSFs, many of which are unimportant. To avoid the
problems inherent to the use of a single common orthonormal orbital basis for
all correlation effects in the MCHF method, we propose to optimize independent
MCHF pair-correlation functions (PCFs), bringing their own orthonormal
one-electron basis. Each PCF is generated by allowing single- and double-
excitations from a multireference (MR) function. This computational scheme has
the advantage of using targeted and optimally localized orbital sets for each
PCF. These pair-correlation functions are coupled together and with each
component of the MR space through a low dimension generalized eigenvalue
problem. Nonorthogonal orbital sets being involved, the interaction and overlap
matrices are built using biorthonormal transformation of the coupled basis sets
followed by a counter-transformation of the PCF expansions.
Applied to the ground state of beryllium, the new method gives total energies
that are lower than the ones from traditional CAS-MCHF calculations using large
orbital active sets. It is fair to say that we now have the possibility to
account for, in a balanced way, correlation deep down in the atomic core in
variational calculations
Extended Calculations of Spectroscopic Data: Energy Levels, Lifetimes and Transition rates for O-like ions from Cr XVII to Zn XXIII
Employing two state-of-the-art methods, multiconfiguration
Dirac--Hartree--Fock and second-order many-body perturbation theory, the
excitation energies and lifetimes for the lowest 200 states of the ,
, , , , , , , and configurations, and multipole (electric
dipole (E1), magnetic dipole (M1), and electric quadrupole (E2)) transition
rates, line strengths, and oscillator strengths among these states are
calculated for each O-like ion from Cr XVII to Zn XXIII. Our two data sets are
compared with the NIST and CHIANTI compiled values, and previous calculations.
The data are accurate enough for identification and deblending of new emission
lines from the sun and other astrophysical sources. The amount of data of high
accuracy is significantly increased for the states of several O-like
ions of astrophysics interest, where experimental data are very scarce
CH in stellar atmospheres: an extensive linelist
The advent of high-resolution spectrographs and detailed stellar atmosphere
modelling has strengthened the need for accurate molecular data.
Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with
which to study transitions from the CH molecule. We combine programs for
spectral analysis of molecules and stellar-radiative transfer codes to build an
extensive CH linelist, including predissociation broadening as well as newly
identified levels. We show examples of strong predissociation CH lines in CEMP
stars, and we stress the important role played by the CH features in the
Bond-Neff feature depressing the spectra of barium stars by as much as 0.2
magnitudes in the 3000 -- 5500 \AA\ range. Because of the extreme
thermodynamic conditions prevailing in stellar atmospheres (compared to the
laboratory), molecular transitions with high energy levels can be observed.
Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at
http://www.astro.ulb.ac.be/~spectrotools
A theoretical study of the C- 4So_3/2 and 2Do_{3/2,5/2} bound states and C ground configuration: fine and hyperfine structures, isotope shifts and transition probabilities
This work is an ab initio study of the 2p3 4So_3/2, and 2Do_{3/2,5/2} states
of C- and 2p2 3P_{0,1,2}, 1D_2, and 1S_0 states of neutral carbon. We use the
multi-configuration Hartree-Fock approach, focusing on the accuracy of the wave
function itself. We obtain all C- detachment thresholds, including correlation
effects to about 0.5%. Isotope shifts and hyperfine structures are calculated.
The achieved accuracy of the latter is of the order of 0.1 MHz.
Intra-configuration transition probabilities are also estimated.Comment: 15 pages, 2 figures, 12 table
Trace Spaces: an Efficient New Technique for State-Space Reduction
State-space reduction techniques, used primarily in model-checkers, all rely
on the idea that some actions are independent, hence could be taken in any
(respective) order while put in parallel, without changing the semantics. It is
thus not necessary to consider all execution paths in the interleaving
semantics of a concurrent program, but rather some equivalence classes. The
purpose of this paper is to describe a new algorithm to compute such
equivalence classes, and a representative per class, which is based on ideas
originating in algebraic topology. We introduce a geometric semantics of
concurrent languages, where programs are interpreted as directed topological
spaces, and study its properties in order to devise an algorithm for computing
dihomotopy classes of execution paths. In particular, our algorithm is able to
compute a control-flow graph for concurrent programs, possibly containing
loops, which is "as reduced as possible" in the sense that it generates traces
modulo equivalence. A preliminary implementation was achieved, showing
promising results towards efficient methods to analyze concurrent programs,
with very promising results compared to partial-order reduction techniques
Synthesizing Program Input Grammars
We present an algorithm for synthesizing a context-free grammar encoding the
language of valid program inputs from a set of input examples and blackbox
access to the program. Our algorithm addresses shortcomings of existing grammar
inference algorithms, which both severely overgeneralize and are prohibitively
slow. Our implementation, GLADE, leverages the grammar synthesized by our
algorithm to fuzz test programs with structured inputs. We show that GLADE
substantially increases the incremental coverage on valid inputs compared to
two baseline fuzzers
Tensorial form and matrix elements of the relativistic nuclear recoil operator
Within the lowest-order relativistic approximation () and to
first order in , the tensorial form of the relativistic corrections of
the nuclear recoil Hamiltonian is derived, opening interesting perspectives for
calculating isotope shifts in the multiconfiguration Dirac-Hartree-Fock
framework. Their calculation is illustrated for selected Li-, B- and C-like
ions. The present work underlines the fact that the relativistic corrections to
the nuclear recoil are definitively necessary for getting reliable isotope
shift values.Comment: 22 pages, no figures, submitted to J. Phys.
Irreducible tensor-form of the relativistic corrections to the M1 transition operator
The relativistic corrections to the magnetic dipole moment operator in the
Pauli approximation were derived originally by Drake (Phys. Rev. A 3(1971)908).
In the present paper, we derive their irreducible tensor-operator form to be
used in atomic structure codes adopting the Fano-Racah-Wigner algebra for
calculating its matrix elements.Comment: 26 page
- …