11 research outputs found

    Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care

    Get PDF
    OBJECTIVES: To assess the accuracy in diagnosing heart failure of clinical features and potential primary care investigations, and to perform a decision analysis to test the impact of plausible diagnostic strategies on costs and diagnostic yield in the UK health-care setting. DATA SOURCES: MEDLINE and CINAHL were searched from inception to 7 July 2006. 'Grey literature' databases and conference proceedings were searched and authors of relevant studies contacted for data that could not be extracted from the published papers. REVIEW METHODS: A systematic review of the clinical evidence was carried out according to standard methods. Individual patient data (IPD) analysis was performed on nine studies, and a logistic regression model to predict heart failure was developed on one of the data sets and validated on the other data sets. Cost-effectiveness modelling was based on a decision tree that compared different plausible investigation strategies. RESULTS: Dyspnoea was the only symptom or sign with high sensitivity (89%), but it had poor specificity (51%). Clinical features with relatively high specificity included history of myocardial infarction (89%), orthopnoea (89%), oedema (72%), elevated jugular venous pressure (70%), cardiomegaly (85%), added heart sounds (99%), lung crepitations (81%) and hepatomegaly (97%). However, the sensitivity of these features was low, ranging from 11% (added heart sounds) to 53% (oedema). Electrocardiography (ECG), B-type natriuretic peptides (BNP) and N-terminal pro-B-type natriuretic peptides (NT-proBNP) all had high sensitivities (89%, 93% and 93% respectively). Chest X-ray was moderately specific (76-83%) but insensitive (67-68%). BNP was more accurate than ECG, with a relative diagnostic odds ratio of ECG/BNP of 0.32 (95% CI 0.12-0.87). There was no difference between the diagnostic accuracy of BNP and NT-proBNP. A model based upon simple clinical features and BNP derived from one data set was found to have good validity when applied to other data sets. A model substituting ECG for BNP was less predictive. From this a simple clinical rule was developed: in a patient presenting with symptoms such as breathlessness in whom heart failure is suspected, refer directly to echocardiography if the patient has a history of myocardial infarction or basal crepitations or is a male with ankle oedema; otherwise, carry out a BNP test and refer for echocardiography depending on the results of the test. On the basis of the cost-effectiveness analysis carried out, such a decision rule is likely to be considered cost-effective to the NHS in terms of cost per additional case detected. The cost-effectiveness analysis further suggested that, if likely benefit to the patient in terms of improved life expectancy is taken into account, the optimum strategy would be to refer all patients with symptoms suggestive of heart failure directly for echocardiography. CONCLUSIONS: The analysis suggests the need for important changes to the NICE recommendations. First, BNP (or NT-proBNP) should be recommended over ECG and, second, some patients should be referred straight for echocardiography without undergoing any preliminary investigation. Future work should include evaluation of the clinical rule described above in clinical practice

    Analysis of receptor localization in the central nervous system using in vitro and in vivo receptor autoradiography

    No full text
    Quantitative receptor autoradiography methods have been widely used over the last three decades to study the distribution and physiological role of a receptor in various tissues. This review provides an overview of in vivo and in vitro receptor autoradiography methods and their advantages as well as disadvantages in the study of receptors in the central nervous system. Comparison with immunohistochemical and in situ hybridization methods is also highlighted in relation to the study of a given receptor in the nervous sytem

    Gender-Specific Effect of Mthfr Genotype and Neonatal Vigabatrin Interaction on Synaptic Proteins in Mouse Cortex

    No full text
    The enzyme methylenetetrahydrofolate reductase (MTHFR) is a part of the homocysteine and folate metabolic pathways, affecting the methylations of DNA, RNA, and proteins. Mthfr deficiency was reported as a risk factor for neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. Neonatal disruption of the GABAergic system is also associated with behavioral outcomes. The interaction between the epigenetic influence of Mthfr deficiency and neonatal exposure to the GABA potentiating drug vigabatrin (GVG) in mice has been shown to have gender-dependent effects on mice anxiety and to have memory impairment effects in a gender-independent manner. Here we show that Mthfr deficiency interacts with neonatal GABA potentiation to alter social behavior in female, but not male, mice. This impairment was associated with a gender-dependent enhancement of proteins implicated in excitatory synapse plasticity in the female cortex. Reelin and fragile X mental retardation 1 protein (FMRP) levels and membrane GluR1/GluR2 ratios were elevated in wild-type mice treated neonatally with GVG and in Mthfr+/− mice treated with saline, but not in Mthfr+/− mice treated with GVG, compared with control groups (wild type treated with saline). A minor influence on the levels of these proteins was observed in male mice cortices, possibly due to high basal protein levels. Interaction between gender, genotype, and treatment was also observed in the GABA pathway. In female mice, GABA Aα2/gephyrin ratios were suppressed in all test groups; in male mice, a genotype-specific enhancement of GABA Aα2/gephyrin was observed. The lack of an effect on either reln or Fmr1 transcription suggests post-transcriptional regulation of these genes. Taken together, these findings suggest that Mthfr deficiency may interact with neonatal GABA potentiation in a gender-dependent manner to interrupt synaptic function. This may illustrate a possible mechanism for the epigenetic involvement of Mthfr deficiency in neurodevelopmental disorders

    Pharmacological and Biochemical Aspects of GABAergic Neurotransmission: Pathological and Neuropsychobiological Relationships

    No full text
    corecore