754 research outputs found

    Phase-dependent decoherence of optical transitions in Pr3+:LaF3 in the presence of a driving field

    Get PDF
    The decoherence times of orthogonally phased components of the optical transition dipole moment in a two-level system have been observed to differ by an order of magnitude. This phase anisotropy is observed in coherent transient experiments where an optical driving field is present during extended periods of decoherence. The decoherence time of the component of the dipole moment in phase with the driving field is extended compared to T_2, obtained from two-pulse photon echoes, in analogy with the spin locking technique of NMR.Comment: 5 pages, 2 figures; replaced with published versio

    Violation of the Leggett-Garg inequality with weak measurements of photons

    Full text link
    By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non-intrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.Comment: 5 pages, 4 figure

    Experimental optical phase measurement approaching the exact Heisenberg limit

    Get PDF
    The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement---the estimation of a completely unknown phase---has been experimentally demonstrated with precision beyond the SNL, and even scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor. However, existing approaches have not been able---even in principle---to achieve the best possible precision, saturating the HL exactly. Here we demonstrate a scheme to achieve true HL phase measurement, using a combination of three techniques: entanglement, multiple samplings of the phase shift, and adaptive measurement. Our experimental demonstration of the scheme uses two photonic qubits, one double passed, so that, for a successful coincidence detection, the number of photon-passes is N=3N=3. We achieve a precision that is within 4%4\% of the HL, surpassing the best precision theoretically achievable with simpler techniques with N=3N=3. This work represents a fundamental achievement of the ultimate limits of metrology, and the scheme can be extended to higher NN and other physical systems.Comment: (12 pages, 6 figures), typos correcte

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    Insulin-like growth factor binding protein-5 as a biomarker for detection of early liver disease

    Get PDF
    Study identifying an Insulin-like growth factor binding protein-5 as a biomarker for detection of early liver disease presented at the annual congress of the british toxicology societ

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    High-Fidelity Z-Measurement Error Correction of Optical Qubits

    Get PDF
    We demonstrate a quantum error correction scheme that protects against accidental measurement, using an encoding where the logical state of a single qubit is encoded into two physical qubits using a non-deterministic photonic CNOT gate. For the single qubit input states |0>, |1>, |0>+|1>, |0>-|1>, |0>+i|1>, and |0>-i|1> our encoder produces the appropriate 2-qubit encoded state with an average fidelity of 0.88(3) and the single qubit decoded states have an average fidelity of 0.93(5) with the original state. We are able to decode the 2-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 1-qubit decoded states arising from 16 real and imaginary single qubit superposition inputs have an average fidelity of 0.96(3).Comment: 4 pages, 4 figures, comments welcom
    corecore