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We demonstrate a quantum error correction scheme that protects against accidental measurement, using a
parity encoding where the logical state of a single qubit is encoded into two physical qubits using a nondeter-
ministic photonic controlledioT gate. For the single qubit input stati®, |1), [0y%|1), and|0)+i|1) our
encoder produces the appropriate two-qubit encoded state with an average fidelity of 0.88+0.03 and the single
qubit decoded states have an average fidelity of 0.93+0.05 with the original state. We are able to decode the
two-qubit statgup to a bit flip by performing a measurement on one of the qubits in the logical basis; we find
that the 64 one-qubit decoded states arising from 16 real and imaginary single-qubit superposition inputs have
an average fidelity of 0.96+0.03.
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One of the greatest promises of quantum information scieffective success rate of gate operations can be boosted. A
ence is the exponential improvement in the computationasimilar principle underlies alternative LOQC schemes
power offered by a quantum computer for certain tgsks  [20,21] in which a quantum computation proceeds by gener-
Experimental progress has been made in NMR ion trap ~ ating a highly entangled state of many qubits—a cluster
[3,4], cavity QEDI[5], superconducting6], and spin[7] qu- _state—e}nd then performing only single qubit measurements
bits. A relatively recent proposal by Knill, Laflamme, and in @ basis determined from the outcome of previous measure-
Milburn (KLM ) is linear optics quantum computifigOQC) ments[22]. Like the n-qublt Z-error QEC code, these cluster
[8] in which quantum information is encoded in single pho_statg—:-s are robust against acmdemaheasuremen.t. The en-
tons, and the nonlinear interaction required for two photorf©ding of Eq.(1) also forms the basic element in a redun-
gates is realized through conditional measureniént.2. dancy code, which can be used to correct for photon loss

The critical challenge for all architectures is achieving fault&mrS[23l )1 =al0) |0y +B|1) 1), For these reasons it

tolerance: this will require quantum error correcti6EC) is important to show that qubit states can be encoded with

[13,14: a logical qubit|#), is encoded in a number of physi- QL%Zn?gﬁ{gy and recovered with high fidelity aftat mea-

cal qubits such that joint measurements of the qubits can ..o \ye report an experimental demonstration of QEC
extract information about errors without destroying the quanysing the two-qubit code of Eq1), in which the encoded
tum information. A five-qubit encoding against all one-qubit state js prepared from an arbitrary input state, the error is
errors has been demonstrated in NME®]. A two-qubit en-  inguced, and syndrome measured. The final bit flip correc-
coding, a|00)+B|11), has been demonstrated with polariza-ion is not made. A single qubit prepared in an arbitrary state
tion single photon qubitg16]. l#)=a|0)+B|1) is input into the target mode of a nondeter-
A simple QEC code is the one introduced by KLM that ministic photonic CNOT gate. An ancilla qubit in the real
protects against a computational basis measuremént—equal superpositiofd)+|1) is input into the control. We use

measurementof one of the qubit$8] quantum state tomography to determine the resulting two-
qubit encoded state generated for the inpus)
[ = O+ B|1)L = «(|00) + [11)) + B(|0D) + |10)). =|0y,|1),|0)%|1), and |0)+i|1) (neglecting normalization

(1) and find an average fidelity ¢¥=0.88+0.03 with|¢) . For

the same six one-qubit inputs, the average fidelity of the
This is a parity encoding{0), is represented by all even reconstructed one-qubit decoded stateB+€.93+0.05. Fi-
parity combinations of the two qubit$1), by all the odd nally, we test the decodin@nd encodingby measuring one
parity combinations. If @ measurement is made on either of or other of the qubits in the computational basis for 16 dif-
the physical qubits and the result “0” is obtained, then theferent real and imaginary superposition inputs and perform-
state collapses to an unencoded qubit, but the superpositiang one-qubit quantum state tomography on the second qubit.
is preserved,; if the result is “1” a bit-flipped version of the We find that the average fidelity of this second qubit with
unencoded qubit is the result. This generalizes straightforthe state|#)=a|0)+8|1) or the bit-flipped version of it
wardly to ann-qubit codd 17]: if a Z measurement occurs on |¢')=8|0)+a|1) is F=0.96+0.03. These results demonstrate
any of the qubits, the encoding is simply reducedntel  that high fidelity Z-measurement QEC is possible for a
qubits. This type of QEC is critical for a scale up of LOQC simple two-qubit code.
circuits: KLM showed that their nondeterministic, teleported  Figure 1a) shows schematically how the encoding of Eq.
controlledNoT (CNOT) gate [8] fails by performing aZ (1) can be achieved using a CNOT gate and an ancilla qubit
measurement on one of the qubithis is also true for prepared in the stat®)+|1). Figure 1a) also shows how a
equivalent gatefl8,19). Thus by using this QEC technique projective measurement of one of the qubits in the logical
the qubits can be protected against gate failures and so thmsis, plus a bit-fli)X operation, conditional on the measure-
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theoretically extract the one-qubit decoded states from the

FIG. 1. Encoding against-measurement errofa) A schematic  yyo_qupit encoded states shown in Fig. 2. The one-qubit de-
of a circuit for performing the encoding and decoding of the state,qded state can be produced in four ways: by measuring
| . The circuit consisits of a CNOT gate with the control input set ‘

either the first or second qubit in the computational basis,
to |0)+|1) and the arbitrary, one-qubit state to be encodednput 9 b

. ; . ._and getting the result “0” or “1.” In Fig. 3 we show all four
Into the target. Note that decoding can be achieved by Measuning, - onstructed one-qubit density matrices extracted from each
either of the encoded qubit¢b) Schematic of the experimental q Yy

CNOT gate shown irfa), as originally demonstrated [10]. of the six encoded states_ln Fl.g' 2. We Show.t.he Imaginary
components only for the imaginary superpositions since in
ment outcome, acts as a decoder. The CNOT gate used in oall other cases these components should be zero, and are
demonstration is shown schematically in Figb)l It oper- measured to be relatively smdthe average of imaginary
ates nondeterministically and successful events are postseemponents is 0.04+0.04The average fidelity of these one-
lected by coincidence measurements. For a detailed descrip-
tion of its operation see Rgf10]. Pairs of energy degenerate
nonentangled photons of wavelength 702.2 nm were gen-
erated in a nonlinegB-barium-boratgBBO) crystal through
spontaneous parametric down conversion af=851.1 nm,
P=900 mW pump beam. A coincidence window of 1 ns was
used and no correction for accidental counts was made s
These photons were sent through a polarizing beam splitte ~ ®
(PBS to prepare a highly pure horizontal polarization state.
Qubits are stored in the polarization state of these two pha
tons using the assignment: horizonfid) = |0); and vertical
[V)=|1). The control input is prepared in the equal real su-
perposition|0)+|1) using a half wave platéHWP) with its
optic axis at 22.5°. An arbitrar{y}) was prepared using a
HWP and quarter wave plat®WP). The output of the cir-
cuit, nominally|),, was analyzed using standard two-qubit
guantum state tomographg4]. The required two-qubit mea-
surementg 24] were performed using a pair of analyzers
each consisting of a QWP and HWP followed by a PBS anc,;
a single photon counting module. Each analyzer can perforr
any one-qubit projective measurement.

We firstly confirm that this circuit produces the correct
two-qubit encoded state: Table | shows six one-qubit input: ™,
(the two eigenstates and four equal superpositiamsl the
corresponding ideal encoded states. For these six one-qul
input states we used our encoding circuit to produce a two,;
qubit encoded state and performed two-qubit quantum stai

the density matrices for the six two-qubit encoded states ar
shown in Fig. 2. These experimentally measured encode &
states have an average fidelity BF0.88+0.03 with|¢),
(where the error bar is the standard deviatjalemonstrating
the high fidelity of the encoding operation. FIG. 2. Two-qubit encoded states. The real and imaginary parts

Next we test how well the encoding has worked by as-of the density matrices are shown for the encoded states produced
suming the capability to perform perfect decoding and sdor the one-qubit inputs given in Table I.
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FIG. 4. One-qubit decoded state fidelities for the one-qubit input
states co@)|0)+sin(6)|1) and|0)+e/®0"~2)|1),
o+l 1
Re
fidelity with the ideal statéx) or [¢/'). The results are shown
in Fig. 4. The average fidelity for all of these statesclud-
ing 6, $=0° and 907 is 0.96+0.03, which is the same, to
within error, as for the reconstructed states shown in Fig. 3.
The behavior observed in Fig. 4 can be explained in terms
of the classical and nonclassical interference requirements of
the CNOT gate: The gate splits and recombines the control
and target polarization modes requiring two classical inter-
ferences, and nonclassically interferes the confiwdl and
target|H)—|V) modes[10]. In practice, the visibility of each
of these interferences is subunity and thus contributes to er-
rors in the operation of the gate: The encoder works well for
0=¢$=45°, i.e., the input staté)+|1)(=|H)+|V)) since no
nonclassical interference is required, and only one classical
interference is required for the control. The encoder also
works well when qubit 1(the output of the control modiés
FIG. 3. One-qubit decoded states. A table of density matrices fomeasured to b¢0) since, again, only one classical interfer-
the six inputs and four decoding measurements listed in the figureence is required. Finally, the encoder works well foclose
The imaginary parts are shown for t{@+i|1) and|0)—i|1) inputs  to zero, which is expected from Fig(&, which shows that
only. the |01){01 population, the main contributor to errors in this
case, is very small.
qubit states with|¢) or |¢/) is F=0.93+0.05. Since these This two-qubitZ-error encoding could be extended to a
states are reconstructed from the six two-qubit states, this-qubit encoding using additional CNOT gates with single
result demonstrates that given perfect decoding, the ongshotons prepared in thi®)+|1) state as the control input,
qubit decoded states are more robust to imperfections in thand any of the already encoded qubits as the target. A very
encoder than the two-qubit encoded states. similar technique can be used to build up a cluster state using
Finally we test the decoding circuias well as the encod- controlled-phas€CZ) gates[20]. Note, however, that our
ing circuit) by preparing the one-qubit input in the unequal CNOT gate succeeds with the probability of 1/26], but
amplitude, real superpositions ¢650) +sin(#)|1), and equal can in principle be made deterministic and scaldt@. In
amplitude, variable phase superposititfs-€°°=2Y|1), for ~ order to build up the parity encoding or a cluster state in a
0, $=10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. Togetherscalable way teleportation gates or similar technigjidd
with the results of Fig. 3giving 6, $=0° and 90}, these would be needed.
states map out two orthogonal great semicircles on the Bloch In conclusion, we have experimentally demonstrated a
sphere. For each of these inputs we reconstructed the onbigh fidelity realisation of a two-qubiZ-measurement QEC
qubit density matrixdirectly for both measurement outcomes scheme(up to implementation of aX gate. For a represen-
on both qubits, i.e., four one-qubit density matrices for eacHative set of input states the average fidelity of the one-qubit
input state. From these density matrices we calculated théecoded state is 0.96+0.03. Our scheme uses a nondetermin-

l0y-i11)
Re
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istic CNOT gate operating on the polarization states of singleoded state or to the creation of a cluster state by using CZ
photon qubits, and is therefore a nondeterministic encodingates.

and will not be useful in its own right for a scalable quantum

computer. However, this does provide a proof of principle of This work was supported by the Australian Research
an encoding against a realistic error in linear optics quantunCouncil, the NSA and ARDA under ARO Contract No.
computing. The technique can be extended to a larger erdAAD 19-01-1-0651.
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