847 research outputs found

    Applicability of Nanofluids in High Flux Solar Collectors

    Get PDF
    Concentrated solar energy has become the input for an increasing number of experimental and commercial thermal systems over the past 10-15 years [M. Thirugnanasambandam et al., Renewable Sustainable Energy Rev. 14 (2010)]. Recent papers have indicated that the addition of nanoparticles to conventional working fluids (i.e., nanofluids) can improve heat transfer and solar collection [H. Tyagi et al., J. Sol. Energy Eng. 131, 4 (2009); P. E. Phelan et al., Annu. Rev. Heat Transfer 14 (2005)]. This work indicates that power tower solar collectors could benefit from the potential efficiency improvements that arise from using a nanofluid working fluid. A notional design of this type of nanofluid receiver is presented. Using this design, we show a theoretical nanofluid enhancement in efficiency of up to 10% as compared to surface-based collectors when solar concentration ratios are in the range of 100-1000. Furthermore, our analysis shows that graphite nanofluids with volume fractions on the order of 0.001% or less are suitable for 10-100 MW(e) power plants. Experiments on a laboratory-scale nanofluid dish receiver suggest that up to 10% increase in efficiency is possible (relative to a conventional fluid)-if operating conditions are chosen carefully. Lastly, we use these findings to compare the energy and revenue generated in a conventional solar thermal plant to a nanofluid-based one. It is found that a 100 MW(e) capacity solar thermal power tower operating in a solar resource similar to Tucson, AZ, could generate similar to$ 3.5 million more per year by incorporating a nanofluid receiver. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3571565

    A framework to evaluate whether to pool or separate behaviors in a multilayer network

    Get PDF
    A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. However, the process for selecting which information to include is not always straightforward. Using data on two agonistic behaviors in a captive population of monk parakeets (Myiopsitta monachus), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between two individuals) affects individual- and group-level social properties. We designed two reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the two behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the two behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.Comment: accepted for Current Zoolog

    Emergence of distinct and heterogeneous strains of amyloid beta with advanced Alzheimer's disease pathology in Down syndrome

    Get PDF
    Amyloid beta (Aβ) is thought to play a critical role in the pathogenesis of Alzheimer’s disease (AD). Prion-like Aβ polymorphs, or “strains”, can have varying pathogenicity and may underlie the phenotypic heterogeneity of the disease. In order to develop effective AD therapies, it is critical to identify the strains of Aβ that might arise prior to the onset of clinical symptoms and understand how they may change with progressing disease. Down syndrome (DS), as the most common genetic cause of AD, presents promising opportunities to compare such features between early and advanced AD. In this work, we evaluate the neuropathology and Aβ strain profile in the post-mortem brain tissues of 210 DS, AD, and control individuals. We assayed the levels of various Aβ and tau species and used conformation-sensitive fluorescent probes to detect differences in Aβ strains among individuals and populations. We found that these cohorts have some common but also some distinct strains from one another, with the most heterogeneous populations of Aβ emerging in subjects with high levels of AD pathology. The emergence of distinct strains in DS at these later stages of disease suggests that the confluence of aging, pathology, and other DS-linked factors may favor conditions that generate strains that are unique from sporadic AD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-021-01298-0

    Modeling of subcontinuum thermal transport across semiconductor-gas interfaces

    Get PDF
    A physically rigorous computational algorithm is developed and applied to calculate subcontinuum thermal transport in structures containing semiconductor-gas interfaces. The solution is based on a finite volume discretization of the Boltzmann equation for gas molecules (in the gas phase) and phonons (in the semiconductor). A partial equilibrium is assumed between gas molecules and phonons at the interface of the two media, and the degree of this equilibrium is determined by the accommodation coefficients of gas molecules and phonons on either side of the interface. Energy balance is imposed to obtain a value of the interface temperature. The classic problem of temperature drop across a solid-gas interface is investigated with a simultaneous treatment of solid and gas phase properties for the first time. A range of transport regimes is studied, varying from ballistic phonon transport and free molecular flow to continuum heat transfer in both gas and solid. A reduced-order model is developed that captures the thermal resistance of the gas-solid interface. The formulation is then applied to the problem of combined gas-solid heat transfer in a two-dimensional nanoporous bed and the overall thermal resistance of the bed is characterized in terms of the governing parameters. These two examples exemplify the broad utility of the model in practical nanoscale heat transfer applications

    Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective

    Get PDF
    The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders

    Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery

    Get PDF
    © 2020 Elsevier B.V. From nanopharmaceutics to renewable energy, silver nanoparticles (AgNPs) present innumerable applications in the contemporary era. However, the associated toxicity to the biosystems limits their application. Effective utilization of AgNPs, therefore, requires their surface conjugation with biologically benevolent moieties that enhance the bio-acceptability of silver-based nanosystems, and supplementary functionalities for further extension of their unique applications. The clinical importance of AgNPs was established long ago, but their clinical utilization has been explored only recently with the phenomenon of bio-conjugation. The biomolecule-conjugated AgNPs present operable solutions for tedious clinical complications of the present era, such as multidrug resistance, designing of pharmaceuticals with improved bioavailability, superior drug delivery vehicles and in situ bio imaging of important metabolites that utilize the biomolecule-anchored surface engineered AgNPs. This review epigrammatically discusses some interesting clinical applications of surface conjugated AgNPs with biomolecules such as peptides, nucleic acids, amino acids and antibodies in the current nanopharmaceutical paradigm

    IGVBrowser–a genomic variation resource from diverse Indian populations

    Get PDF
    The Indian Genome Variation Consortium (IGVC) project, an initiative of the Council for Scientific and Industrial Research, has been the first large-scale comprehensive study of the Indian population. One of the major aims of the project is to study and catalog the variations in nearly thousand candidate genes related to diseases and drug response for predictive marker discovery, founder identification and also to address questions related to ethnic diversity, migrations, extent and relatedness with other world population. The Phase I of the project aimed at providing a set of reference populations that would represent the entire genetic spectrum of India in terms of language, ethnicity and geography and Phase II in providing variation data on candidate genes and genome wide neutral markers on these reference set of populations. We report here development of the IGVBrowser that provides allele and genotype frequency data generated in the IGVC project. The database harbors 4229 SNPs from more than 900 candidate genes in contrasting Indian populations. Analysis shows that most of the markers are from genic regions. Further, a large fraction of genes are implicated in cardiovascular, metabolic, cancer and immune system-related diseases. Thus, the IGVC data provide a basal level variation data in Indian population to study genetic diseases and pharmacology. Additionally, it also houses data on ∼50 000 (Affy 50 K array) genome wide neutral markers in these reference populations. In IGVBrowser one can analyze and compare genomic variations in Indian population with those reported in HapMap along with annotation information from various primary data sources

    IGVBrowser–a genomic variation resource from diverse Indian populations

    Get PDF
    The Indian Genome Variation Consortium (IGVC) project, an initiative of the Council for Scientific and Industrial Research, has been the first large-scale comprehensive study of the Indian population. One of the major aims of the project is to study and catalog the variations in nearly thousand candidate genes related to diseases and drug response for predictive marker discovery, founder identification and also to address questions related to ethnic diversity, migrations, extent and relatedness with other world population. The Phase I of the project aimed at providing a set of reference populations that would represent the entire genetic spectrum of India in terms of language, ethnicity and geography and Phase II in providing variation data on candidate genes and genome wide neutral markers on these reference set of populations. We report here development of the IGVBrowser that provides allele and genotype frequency data generated in the IGVC project. The database harbors 4229 SNPs from more than 900 candidate genes in contrasting Indian populations. Analysis shows that most of the markers are from genic regions. Further, a large fraction of genes are implicated in cardiovascular, metabolic, cancer and immune system-related diseases. Thus, the IGVC data provide a basal level variation data in Indian population to study genetic diseases and pharmacology. Additionally, it also houses data on ∼50 000 (Affy 50 K array) genome wide neutral markers in these reference populations. In IGVBrowser one can analyze and compare genomic variations in Indian population with those reported in HapMap along with annotation information from various primary data sources
    corecore