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Abstract

A multilayer network approach combines different network layers, which are connected by inter-

layer edges, to create a single mathematical object. These networks can contain a variety of infor-

mation types and represent different aspects of a system. However, the process for selecting which

information to include is not always straightforward. Using data on 2 agonistic behaviors in a cap-

tive population of monk parakeets (Myiopsitta monachus), we developed a framework for investi-

gating how pooling or splitting behaviors at the scale of dyadic relationships (between 2 individu-

als) affects individual- and group-level social properties. We designed 2 reference models to test

whether randomizing the number of interactions across behavior types results in similar structural

patterns as the observed data. Although the behaviors were correlated, the first reference model

suggests that the 2 behaviors convey different information about some social properties and

should therefore not be pooled. However, once we controlled for data sparsity, we found that the

observed measures corresponded with those from the second reference model. Hence, our initial

result may have been due to the unequal frequencies of each behavior. Overall, our findings sup-

port pooling the 2 behaviors. Awareness of how selected measurements can be affected by data

properties is warranted, but nonetheless our framework disentangles these efforts and as a result

can be used for myriad types of behaviors and questions. This framework will help researchers

make informed and data-driven decisions about which behaviors to pool or separate, prior to using

the data in subsequent multilayer network analyses.

Key words: behavioral interactions, monk parakeet, Myiopsitta monachus, network analysis, social context, social relationships

Traditional social network analysis has provided significant insight

into the form and function of social systems, but sociality is often

multifaceted. Including multiple types of social interactions provides

a richer description of social structure (Whitehead and Dufault

1999) and can allow for better integration of multiple factors, such

as spatial, temporal, and genetic relatedness along with social inter-

actions to better explain patterns of sociality. This multilayer

network perspective has gained recent attention because it provides

a framework for combining social analyses and allows researchers

to analyze sociality as one mathematical object (Barrett et al. 2012;

De Domenico et al. 2013; Bianconi 2018; Silk et al. 2018; Finn et al.

2019; Beisner et al. 2020; Pereira et al. 2020). Analyzing multiple

layers together can provide more comprehensive insight into the fac-

tors affecting sociality, the hidden mechanisms of a system, and
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social structure patterns in animal societies than analyzing any one

behavioral or network type in isolation. When using multilayer net-

work approaches, researchers must carefully consider how the net-

work layers are assembled. Social network layers are built from

associations or interactions among dyads (pairs of individuals).

Determining what the layers should represent, and how to construct

them, is a critical step in the formation of any single or multilayer

network. In some cases, this determination is more obvious, espe-

cially when the 2 network layers are very different from one another

(e.g., genetic relatedness and social associations, Evans et al. 2020).

In other cases, decisions about what behaviors to include, exclude,

or treat as equivalent can be much less straightforward.

Pooling behaviors together can provide many benefits. Pooling

observations of different behaviors into a single network layer can

reduce data sparsity problems for some interaction types, resulting

in more comprehensive networks. These pooled layers can result in

better models of the real social structure which allow for better

quantification of sociality. Pooling can also be used to simplify

multilayer network analyses by focusing on fewer network types

and reducing the number of layers used in the analysis, reducing

nonindependence problems and decreasing the risk of committing

Type 1 errors (Silk et al. 2013).

Although pooling behavioral data can provide benefits in multi-

layer analyses, it can also come with potential costs. Different

behaviors may each convey important information when considered

separately, and these differences may be lost if behaviors are pooled

(Beisner et al. 2015, 2020). The combination of 2 nonequivalent

behaviors into a single network layer could introduce unnecessary

noise into a multilayer network analysis and reduce the ability of

those analyses to reach clear conclusions. Combining nonequivalent

behaviors that differ in how commonly or rarely they are observed

could also strongly bias the resulting network layer toward the most

common behavior (Silk et al. 2013). These costs of pooling behav-

iors at the dyadic interaction level are especially important to con-

sider in multilevel analyses where the focus is on detecting structure

at different levels of social organization. Pooling seemingly similar

dyadic interactions may differentially impact more macro-scale so-

cial properties, even in cases where behaviors appear similar at the

dyadic level.

Current methods for deciding whether to pool or split behaviors

within a behavioral context largely fall into 3 main approaches

found across different animal taxa: (1) unspecified decisions made at

either the data collection or analysis level; (2) researcher familiarity

with the biology of the study system; and (3) the strength of correl-

ation between the behavior types at the dyadic level.

Decisions about pooling data are sometimes not well described.

Details about the decision-making process of what behaviors are

included in analyses, or how they may have been pooled or kept sep-

arate, are sometimes not explicitly reported in studies (e.g.,

Herberholz et al. 2003; Viblanc et al. 2016). These choices may not

be reported because weighing decisions about whether to pool or

split behaviors occur at different points during a study. Decisions

about network layers can be made at the time of data collection

when observation protocols determine how data are coded. In these

cases, it is typical for authors to report which behaviors they col-

lected; it is less common for authors to provide a detailed descrip-

tion of all the behaviors that they could have collected, how those

could have been subdivided into more specific categories, and why

particular behaviors were categorized in certain ways. For example,

in a study to identify the patterns of social ties within cichlid co-

operative networks, the authors created affiliative and aggression

networks and listed specific behaviors that qualified as either aggres-

sive or affiliative; however, they did not further explain their reason-

ing for combining the behaviors (Schürch et al. 2010). These

decisions at the data collection stage can have downstream effects

on later analyses, which may be constrained by the ways data were

collected. To ensure flexibility in future analytical approaches,

researchers often collect a suite of behavioral interaction and associ-

ation data in several contexts, such as direct affiliative or aggressive

interactions, and more passive tolerance, proximity, or group associ-

ations. It is important to note that although recording more detailed

observations during data collection can allow for different ways of

slicing, combining, or subsetting data for future analyses, detailed

data like this can also be more difficult to collect reliably, especially

in cases where there are only slight differences between 2 desired be-

havioral types. In cases where many types of behavioral data are col-

lected and coded uniquely, decisions about which types to use to

construct a specific network layer come at the analysis stage. As sug-

gested by Ferreira et al. (2020), it is important to give a detailed de-

scription of the study design as it may provide guidelines for further

analyses in the same study or in other studies.

Decisions about pooling data can also be based on biological

knowledge of the system. Researchers often rely on familiarity with

the biology of the system to decide which behaviors “qualify” as suf-

ficiently different to be coded separately or are similar enough to be

included in the same network layer. This approach is especially com-

mon when researchers perceive 2 behaviors as qualitatively different

types of interactions that both fall within the same social context.

For example, some studies differentiate between low- and high-level

aggressions based on assumptions about the energetic costs or po-

tential for injury (Oczak et al. 2014; Pierard et al. 2019; Wey et al.

2019; Beisner et al. 2020). Although the 2 behaviors may be coded

as separate interaction types, they both fall within an agonistic so-

cial context. Researchers can also build on previous work with the

same or closely related species to use knowledge of the system to

make decisions about which behaviors to include or how to pool

them (Munroe and Koprowski 2014; Beisner et al. 2020; Pereira

et al. 2020). If the animals themselves perceive 2 types of behavioral

interactions as socially equivalent, biologically, it would make sense

to pool these 2 behaviors, and knowledge of the study system can be

used as a rationale for making these decisions. A danger to this ap-

proach is that the study system may not be well enough understood

to make these decisions in ways that align with the biological reality

of how the animals themselves perceive the behaviors. In this case,

pilot studies can be performed to obtain a priori knowledge about

the study system, which can be helpful in the study design and ana-

lysis and may reduce the chances of making type 1 errors (Ferreira

et al. 2020).

Finally, decisions about pooling data can be made using a data-

driven approach. Here, researchers may use initial data analyses to

evaluate whether the frequency of behaviors between individuals is

correlated, whether behaviors can be condensed down to fewer

types using dimension–reduction methods, or through comparing

behaviors to find dissimilar or unique information. For example, in

a study on the effects of perturbations in a social group on hierarchy

structure in house sparrows, the authors pooled the interaction types

that were correlated per behavioral context (Kubitza et al. 2015).

Network layers may also be standardized by consensus ranking to

identify significant vertices in separate layers (Braun 2019).

In this article, we expand on these data-driven methods to help

decide whether to pool or split data. We developed a framework to

examine the implications of splitting or pooling behaviors at the

102 Current Zoology, 2021, Vol. 67, No. 1



dyadic level before deciding on how to construct the layers of net-

works in a multilayer network analysis. This framework can also be

applied to simpler single-layer network analysis. We propose a 3-

step process for investigating the general implications of pooling ver-

sus splitting behaviors: (1) perform exploratory analyses and use

prior knowledge to determine whether the behaviors belong to the

same behavioral context; (2) test whether behaviors can be consid-

ered “interchangeable”; and (3) test how data sparsity may affect

the extent to which behaviors are interchangeable (see Figure 1).

Our approach highlights how pooling or splitting behaviors may dif-

ferentially affect measures of social structure across different levels

of social organization (Hobson et al. 2019a). We focus on how

changes in relationships (formed via different types of interactions)

may affect individual- and group-level social properties like strength

and centrality, network properties, dominance hierarchy structure,

and aggression strategies. We illustrate how this framework can be

used by applying it to 2 types of aggressive behavior recorded in a

group of monk parakeets Myiopsitta monachus. Our aim is to pro-

vide guidelines for other researchers to better evaluate these implica-

tions in their own study systems.

Materials and Methods

Data collection
To illustrate our evaluation methods, we used data collected from

monk parakeet social interactions. Monk parakeets are small (100–

150 g) neotropical parrots that exhibit the potential for cognitive

and social complexity (Hobson et al. 2013, 2014; Hobson and

DeDeo 2015).

We collected data on several types of social interactions in a

long-term captive population of monk parakeets. The parakeets

(n¼21 individuals) were housed at the US Department of

Agriculture Wildlife Services National Wildlife Research Center,

Florida Field Station, located in Gainesville, FL, USA. Observations

occurred during March 2020 (the field season was cut short due to

the coronavirus disease 2019 pandemic). To enable individual iden-

tification, we marked each parakeet’s feathers with a unique color

combination using nontoxic permanent markers (Hobson et al.

2013). We released these marked birds into a large 45�45 m semi-

natural outdoor flight pen and then allowed the social structure time

to stabilize. Observations reported here occurred after the birds had

been in the flight pen and interacting for 9 days.

Observers were stationed in blinds in 3 locations around the

flight pen to conduct observations; 3–4 observers collected observa-

tions between 09:00 and 19:00 daily. We used all-occurrence sam-

pling (Altmann 1974) and recorded dyadic interactions using the

Animal Observer version 1.0 app, directly inputting the data on

iPads. For this analysis, we present data collected on displacements

(instances where one bird aggressively approached another bird and

supplanted it from its location, sometimes via physical contact) and

crowds (where one bird approached another bird which moved

away before the aggressor was within striking range) during a 3-day

Figure 1. A 3-step decision tree showing the process of evaluating whether to pool or split behaviors for multilayer network analysis.
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period when the dominance structure was stable in the group. We

differentiated these 2 behaviors because they appeared to differ in

the severity of aggression: displacements could result in injuries

(Hobson EA, personal observations) although crowds were by defin-

ition always noncontact aggressions.

Having 3–4 observers recording observations at the same time

allowed us to conduct more comprehensive all-occurrence sampling,

but often resulted in different observers logging the same inter-

action. To remove these duplicated observations, we summarized by

the number of observations per interaction type that were observed

in the same minute across each of the 3–4 observers. We filtered the

observations to keep those from whichever observer recorded the

highest number of observations of a certain interaction type in each

minute, removing all potentially duplicated observations from other

observers. We also filtered the data to only include crowds or dis-

placements where both the aggressor and the subject were

identified.

Decision framework to evaluate the potential effects of

pooling behaviors
To test how pooling 2 interaction types may affect social properties,

we followed our 3-step evaluation framework (Figure 1). First, we

quantified the similarity and differences between the behaviors of

interest. Second, we tested whether the behaviors can be considered

interchangeable. Third, we determined the extent to which these

results about the potential for interchangeability may be affected by

the rarity of a behavior.

Step 1: Quantifying similarities and differences between behaviors

The first step in our framework is to examine the behaviors of inter-

est to determine how they are similar and different. To do this, we

examined (1) whether the behaviors differed in how commonly they

were observed, (2) whether dyads exclusively used 1 or multiple be-

havior types in their interactions, and (3) how strongly the 2 behav-

iors were correlated.

We compared the behaviors to determine if one was more com-

mon than another by counting the total number of observed behav-

iors that were coded as crowds and the total coded as displacements.

We compared the percent of observations that were crowding to the

percent that were displacements. We then looked at how dyads used

each behavior type by finding the number of dyads interacting solely

by crowding, solely by displacing, or using a mix of both crowding

and displacing. Finally, we quantified the correlation between the

crowd network and the displacement network. We constructed both

networks as directed and weighted association matrices where the

strength of the association was the number of times each individual

interacted with other group members. Both networks were asym-

metric directed networks (1 individual displacing/crowding an-

other). We used Mantel tests to find the matrix correlation strength

between crowd and displacement networks.

Step 2: Determining whether the behaviors are interchangeable

The second step in our framework is to determine whether behaviors

can be considered interchangeable. To do this, we constructed a ref-

erence model to test whether observed patterns were consistent with

expected patterns (if behaviors are fully interchangeable) for a suite

of social measures. We use the term reference model for random net-

works where some features are constrained to match those of an

observed network (Gauvin et al. 2018; Hobson et al. 2020a).

Randomizing or permuting some but not all of the structure of

interactions is a common tool used in social network research

(Farine and Whitehead 2015; Hobson et al. 2020a).

We constructed a permutation-based reference model (Hobson

et al. 2020a) to test whether randomly reallocating total aggressive

events by behavior type changed social properties (Reference model

1, Supplementary Figure S1). We looked for changes in both individ-

ual- and group-level social properties. For each run of the model, we

summarized the number of displacement and crowd interactions for

each dyad; the sum of both interactions is the total number of inter-

actions in an agonistic context for each dyad. We then randomly re-

allocated the total number of agonistic interactions back to the 2

interaction types for each dyad (see Supplementary Material). This

reference model preserves the total number of individuals in the

group, which individuals interacted in an agonistic context, and the

number of total agonistic interactions. The reference model random-

izes only the number of interactions that were categorized as dis-

placements versus crowds (n¼100 runs). Across many social

properties, we compared the observed values to the values expected

if our 2 behaviors were interchangeable using the proportion of ran-

dom values that are less than the observed values. We used 2-tailed

tests: observed values needed to be <0.025 or >0.975 of values pro-

duced by the reference model to be considered significantly

different.

Step 3: Examining the effect of data sparsity on behavioral

interchangeability

The third step in our framework is to investigate whether observed

differences between 2 behaviors could be due to one behavior occur-

ring much more frequently than the other, rather than simply due to

a lack of interchangeability. We constructed another reference

model (reference model 2) to test this by combining an initial sub-

sampling procedure (Supplementary Figure S2A) followed by reallo-

cating behaviors as we did in Reference model 1 (Supplementary

Figure S2B). As crowds were the rare interaction type in our dataset,

we produced random subsamples of displacements equaling the total

number of crowd events and then reallocated the total number of ag-

onistic interactions as either crowds or displacements for each run

of the model (n¼100 runs). This reference model preserved the total

number of individuals in the group, which individuals interacted in

each agonistic context (crowd versus displacements), and the num-

ber of crowds observed for each dyad. The reference model random-

ized which of the total observed displacements were subsampled in

each run and the number of interactions that were categorized as

displacements versus crowds. Across many social properties, we

compared the observed values to the model values to investigate if

our subsampled data showed evidence for behavioral interchange-

ability. We determined whether observed values significantly differ

from random values in the reference models using the proportion of

random values that are less than the observed values (as for

Reference model 1, we assessed the difference between the observed

and reference model data using 2-tailed tests).

Using the decision framework to evaluate whether to pool behaviors

We use each step in our framework to evaluate the strength and con-

sistency of evidence to make an overall decision about whether to

pool behaviors together. In Step 1, we assess similarity in behavioral

use: we have preliminary evidence that behaviors could be pooled, if

(1) there is no difference in how common the behaviors are, (2) at

least some proportion of the total dyads use both behavior types to

interact, and (3) the behaviors are correlated. If none of the dyads
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use both behavior types and the behaviors are not correlated, then

there is relatively strong evidence that behaviors should not be

pooled. In Step 2, we assess whether behaviors are interchangeable:

if observed data for each behavior produce summary measures that

fall within the expected range of values generated by our reference

model, then the behaviors are clearly interchangeable, and pooling

is strongly justifiable. Otherwise, divergence from these distributions

suggests that the observed behavior may need to be considered sep-

arately. If the 2 behaviors occur approximately equally, then only

Step 2 needs to be performed. In Step 3, we assess whether behaviors

can be interchangeable by controlling for the rarity of one of the

behaviors: if subsampled data for the more common behavior pro-

duces similar results to the observed data for the less common be-

havior this is evidence of 2 things. First, it provides supporting

evidence that behaviors can be pooled, and shows that the differen-

ces in the summary measures are likely due to data availability ra-

ther than a biological distinction between the behavior types.

Second, it illustrates how the particular summary measures chosen

may be affected by or susceptible to the availability of data. In cases

where separated behaviors produce different summary measures in

Step 2, overlapping distributions in Step 3 provide evidence that dif-

ferences in results may be due simply to differences in sparsity and it

may be reasonable to pool behaviors. However, if the sub-sampled

data in Step 3 produce different results, this indicates that any earlier

differences cannot be attributed to data availability alone and the

behaviors should not be pooled.

Comparison of observed values with reference model

distributions
We illustrated the use of our framework by comparing summary

measures reflecting various social properties of our observed data to

the range of values expected from the reference model distributions.

We used several micro- and macro-scale social properties: (1)

individual-level network measures (out-strength, betweenness,

eigenvector centrality); (2) group-level network properties (average

path length, efficiency); (3) dominance hierarchy measures (linear-

ity, steepness, triangle transitivity); and (4) social dominance pat-

terns. For each measure, we compared the observed value to those

produced by our reference models. Evidence supporting pooling

behaviors accrues when observed summary measures overlap with

those expected by our 2 reference models; evidence against pooling

accrues when observed values fall outside the distribution of values

from our reference models.

Testing effects of pooling on individual-level properties

We chose 3 individual-level social properties: out-strength, between-

ness, and eigenvector centrality. We selected these measures because

they represent biologically relevant aspects of social networks and

are not by definition affected simply by network sparsity. We

checked our choice of network measures by referring to the decision

tree described in Sosa et al. (2020) for weighted and directed net-

works. Out-strength is calculated as the sum of the weight of out-

going edges and is a measure of the frequency of an individual’s

interactions (an individual’s social activity). An individual with a

high out-strength value is an individual responsible for many aggres-

sion events. Betweenness centrality measures the extent to which

individuals are central for information flow in a network and is cal-

culated as the number of times the node in question was included in

all possible shortest paths between 2 nodes (Sosa et al. 2020).

Eigenvector centrality is a measure of each individual’s influence on

the entire network, where the importance of an individual is depend-

ent on the importance of other individuals in the network and is cal-

culated by linearly transforming the adjacency matrix (Sosa et al.

2020). Individuals have high eigenvector centrality scores when they

are connected to other well-connected individuals. We calculated all

measures using the igraph package version 1.2.5 (Csárdi and

Nepusz 2006).

For each measure, we compared each individual’s value using

the crowd data to the value using the displacement data. At the

group level, we quantified the correlation strength across all individ-

uals for their crowd and displacement values. A strong correlation

would indicate that individuals that have high values in the crowd

network also have high values in the displacement network, al-

though individuals that had low values in one network also had low

values in the other network. We used the same approach to find the

group-level correlation between crowd and displacement values for

each run of the reference models.

Testing effects of pooling on group-level properties

We chose 2 network summary measures to compare our observed

networks with our permuted reference models: average path length

and efficiency. Both measures provide insight into information

transfer in a network. Average path length measures how intercon-

nected a network is and is calculated as the average of the shortest

path between all pairs of nodes in the network. We measured aver-

age path length using the function “mean_distance” in the igraph

package version 1.2.5 (Csárdi and Nepusz 2006). Efficiency is a

variation of effective information which is normalized to account

for network size. Effective information reflects the noisiness or level

of certainty of a system (Hoel et al. 2020) by subtracting the

Shannon’s entropy of a node’s uncertainty (uncertainty of the edge

out-weights) from the entropy of the network’s uncertainty (distri-

bution of uncertainty of the in-weights across the network) (Klein

and Hoel 2020). A high value of effective information indicates that

the relationships (e.g., interactions or associations) in a network are

informative or are more certain (Klein and Hoel 2020). In our sys-

tem, effective information (via its normalized form, efficiency) meas-

ures the noisiness in the patterns of aggression interactions among

individuals. We used the package “einet” version 0.1.0 (Byrum et al.

2020) to calculate efficiency. Values of efficiency closer to 1 mean

that future states can be explained by the current one (future states

are the same as the current one), whereas values closer to 0 mean

that future states can have a probability of 1/n (completely noisy or

degenerate) (Hoel et al. 2013).

Testing effects of pooling on dominance hierarchy structure

We used 3 measures of dominance hierarchy structure: linearity,

steepness, and triangle transitivity. Multiple measures may result in

a better description of the dominance hierarchy structure as they

measure different aspects and allow for intra- and inter-specific

comparisons (Norscia and Palagi 2015). Linearity is a measure of

the consistency of dyadic aggression in a hierarchy: in a strictly lin-

ear hierarchy (h0 ¼1), dominant individuals beat all lower-ranked

individuals in aggressive contests (Landau 1951). We measured lin-

earity using the “h.index” function with 1,000 randomizations in

the R package EloRating version 0.46.11 (Neumann and Kulik

2020). Steepness reflects the likelihood of winning a dominance en-

counter with adjacently ranked individuals. When a hierarchy is

steep (Dij¼ close to 1), then more dominant individuals will always

win against subordinate individuals, whereas when a hierarchy is
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shallow, subordinates may win from time to time as well. Steepness

is measured as the slope of the regression line between rank order

and the normalized David’s scores using the dyadic dominance

index which we quantified using the “getStp” function in the R

package steepness version 0.2-2 (Leiva and de Vries 2014). Triangle

transitivity is another measure of the orderliness of hierarchies, but

one that focuses on transitive relationships among groups of 3 indi-

viduals. Triangle transitivity calculates the proportion of orderly tri-

ads compared with the proportion that is disorderly (e.g., cyclic

triads, where A wins over B, B over C, and C win over A) (Shizuka

and Mcdonald 2012, 2015). Transitivity and linearity are similar

when all dominance relationships are known but often some dyadic

relationships are unknown (due to individuals avoiding interacting

with specific individuals, sampling effort, etc.). Triangle transitivity

is less sensitive to these null dyads than linearity. We measured tri-

angle transitivity using the function “transitivity,” which calculates

the scaled proportion of transitive triads (0 is the random expect-

ation and 1 is maximum transitivity, no cycles) in the R package

EloRating version 0.46.11 (Neumann and Kulik 2020).

Testing effects of pooling on group-level social dominance patterns

Finally, we assessed the overall social dominance pattern individuals

used to direct aggression. The pattern type indicates how aggression

is structured by relative rank differences between the aggressors and

the subjects of aggression. Potential rank-structured social domin-

ance patterns are the downward heuristic (individuals aggress

against any lower-ranked individuals), close competitors (individu-

als mainly aggress against individuals that are just below them in

rank), and bullying (individuals mainly aggress against individuals

that are much lower in rank, see Hobson et al. 2020b). We assessed

social dominance patterns using the R package “domstruc”

(Mønster, Hobson, and DeDeo, currently available at https://github.

com/danm0nster/domstruc).

Data availability and protocols
All measures were quantified for crowds only, displacements only,

pooled aggression (crowds and displacements), and for each run of

the 2 reference models. We used R version 4.0.0 (R Core Team

2020) for all our analyses and the packages “Beanplot” version 1.2

(Kampstra 2008) and “ggplot2” (Wickham 2016) to make our fig-

ures. All data and code for running the analyses and generating the

figures are available on GitHub (https://github.com/annemarievd

marel/pool-separate-behaviors; van der Marel et al. 2020). All

animal-related activities were approved by the University of

Cincinnati IACUC protocol #AM02-19-11-19-01 and the National

Wildlife Research Center Quality Assurance #3203.

Results

Quantifying similarities and differences between

behaviors
We observed a total of 1,215 agonistic interactions (160 crowds and

1,055 displacements) over 3 days (23.5 h of observation, 82.2

person-hours). Crowds were much rarer than displacements and

accounted for only 13.2% of aggressive interactions. Of the 420

total possible directed dyads, 48.3% interacted agonistically (203

directed dyads). Within directed dyads, crowds and displacements

did not occur equally: a small number of directed dyads only

crowded (5.9%), a larger proportion of directed dyads both

crowded and displaced (35.5%), although the majority of agonistic

dyads interacted only with displacements (58.6%). For directed

dyads that interacted agonistically in some way, we observed

0.78 6 1.63 crowds per dyad (mean 6 standard deviation (SD),

range 0–13) and 5.20 6 9.31 displacements per dyad (range 0–86);

combined across crowds and displacements we observed

5.99 6 10.49 agonistic events per dyad (range 1–93). The observed

number of crowds and displacements in directed dyads were strong-

ly correlated (mantel test: rs¼0.50, P<0.001). These results pro-

vide initial support for pooling behaviors, allowing us to move to

Steps 2 and 3 of our decision framework.

Effects of pooling on individual-level properties
The observed crowd and displacement networks were significantly

correlated for both out-strength and eigenvector centrality

(rs¼0.88, P<0.001 and rs¼0.72, P<0.001, respectively; Figure 2)

showing that individuals have similar social properties in both net-

works. The observed crowd and displacement networks were not

correlated for betweenness centrality (rs¼0.08, P¼0.75; Figure 2):

individuals that were important for information flow in the crowd

network were not important in the displacement network. These

results provide mixed evidence, but mostly provide support for pool-

ing behaviors as 2 out of 3 social properties were correlated (individ-

uals have the same functional role in both networks for the

correlated measures). When we compared how these observed cor-

relation strengths compared with those produced by our 2 reference

models, we found that the observed values of the correlation

strength between crowds and displacements of out-strength and

eigenvector centrality fell within the distribution of both reference

models (out-strength: Reference model 1, P¼0.42; Reference model

2, P¼0.25; and eigenvector centrality: Reference model 1, P¼0.27;

Reference model 2, P¼0.07; Table 1). These results suggest that

both out-strength and eigenvector centrality are robust to random

re-allocation of events into different behavioral types as well as ran-

dom subsampling and re-allocation (Figure 2c). The observed value

of betweenness centrality overlapped the runs of Reference model 1

(P¼0.32) but not the runs of Reference model 2 (P¼0.02) suggest-

ing that betweenness centrality is not robust to subsampling and re-

allocation of aggression events (Table 1 and Figure 2c).

Effects of pooling on group-level properties
When we analyzed group-level properties using average path length

and efficiency, we found mixed results. Average path length for

observed displacements only and for the observed pooled behaviors

were both shorter than when we calculated average path length

using only observed crowd data (Figure 3). When we compared the

average path length for the observed pooled data to the reference

models, we found that the pooled average path length was lower

than both reference models (P<0.001 for all; Table 1). When we

compared the unpooled observed data to the reference models, we

found that the observed average path length for crowds fell within

the distribution of Reference model 1 (P¼0.42) and Reference

model 2 (P¼0.07), but average path length for displacement data

was shorter than path lengths produced by Reference model 1

(P¼0.01; Table 1).

Efficiency for observed crowd data was higher than the displace-

ment only and pooled observed data (Figure 3). When we compared

efficiency for the observed pooled data to the reference models, we

found that the pooled efficiency was significantly lower than both

reference models (P<0.001 for both; Table 1). When we compared

the unpooled observed data to the reference models, we found that
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Figure 2. Scatterplots and distributions of matrix correlations of 3 individual-based metrics for observed values and reference models between crowds and dis-

placements: out-strength, betweenness centrality, and eigenvector centrality. Figure (A) shows the scatterplot of Reference model 1 and (B) of Reference model

2. (C) Distribution of the correlation strength between crowds and displacements in Reference model 1 (dark blue) and Reference model 2 (light blue) for out-

strength, betweenness centrality, and eigenvector centrality. Observed values are indicated in red. The correlations were significant for out-strength and eigen-

vector centrality but not for betweenness centrality. The correlation strengths for the observed data fell within the reference model data (except for betweenness

centrality and Reference model 2). Overall, these results suggest pooling of the 2 behaviors.

Table 1. Evidence for pooling or splitting crowds and displacements for each of the social metrics

Social property Reference model 1 Reference model 2 Overall support

Behavior P-value Supports P-value Supports

Out-strength 0.42 Pooling 0.25 Pooling Pooling

Betweenness centrality 0.32 Pooling 0.02 Splitting Mixed

Eigenvector centrality 0.27 Pooling 0.07 Pooling Pooling

Average path length Crowd 0.42 Pooling

Displace 0.01 Splitting 0.07 Pooling Pooling

Efficiency Crowd <0.001 Splitting

Displace <0.001 Splitting 0.32 Pooling Pooling

Linearity Crowd <0.001 Splitting

Displace <0.001 Splitting 0.10 Pooling Pooling

Steepness Crowd <0.001 Splitting

Displace <0.001 Splitting 0.18 Pooling Pooling

Triangle transitivity Crowd 0.08 Pooling

Displace 0.45 Pooling 0.29 Pooling Pooling

Reference model 1 (Step 2) demonstrates how the effects of analyzing behaviors separately versus pooled can affect the summary measures and Reference model 2

(Step 3) shows how apparent differences in the observed dataset could be erased by randomly re-allocating behaviors to each behavior type. We used 2-tailed tests:

observed P-values needed to be <0.025 or >0.975 of values produced by the reference model to be considered significantly different. Significant different values

support splitting although nonsignificant values support pooling.
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observed crowd efficiency was higher than Reference model 1 effi-

ciencies (P<0.001) but that observed displacement efficiency was

lower than Reference model 1 efficiencies (P<0.001). Observed

crowd efficiency overlapped with Reference model 2 values

(P¼0.32; Table 1).

Effects of pooling on dominance hierarchy structure
Results for our analyses of dominance hierarchy structure were

largely consistent across all measures (Figure 4). Linearity and

steepness values of the observed pooled aggression were higher than

those produced by either crowds or displacements alone.

Comparing observed crowds to observed displacements showed that

the group’s hierarchy was less linear and shallower for crowd data

compared with displacement data. When we compared linearity and

steepness for the observed pooled data to the reference models, we

found that the observed data was significantly higher than the refer-

ence models (P<0.001 for all; Table 1). When we compared the

unpooled observed data to the reference models, we found that nei-

ther crowds nor displacements overlapped with the Reference model
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108 Current Zoology, 2021, Vol. 67, No. 1



1 distribution: crowds had lower linearity (P<0.001) and steepness

(P<0.001) although displacements had higher linearity (P<0.001)

and steepness (P<0.001) values compared with Reference model 1

(Table 1). Once we controlled displacements for rarity, the observed

crowd values fell within the range of Reference model 2 runs

(P¼0.1 and 0.18 for linearity and steepness, respectively; Table 1).

Observed crowds had higher triangle transitivity than either

observed displacements or pooled observations (Figure 4). Triangle

transitivity for pooled observations overlapped with the distribu-

tions of both reference models (P Reference model 1 crowds¼0.44,

P Reference model 1 displace¼0.4, P Reference model 2 dis-

place¼0.29; Table 1). Similarly, both observed crowds and

observed displacements fell within the distribution of transitivity

values when behaviors were randomly re-allocated (Reference

model 1: P¼0.08 for crowds and P¼0.45 for displacements) and

when displacements were subsampled and re-allocated (Reference

model 2: P¼0.29; Table 1).

Effects of pooling on group-level social dominance

patterns
Rank-structured social dominance patterns in the observed datasets

(crowds, displacements, and both behaviors pooled) were all con-

sistently categorized as a bullying strategy (where individuals prefer-

entially aggress against others ranked much lower than themselves).

When we randomly re-allocated events as crowds or displacements

(Reference model 1), we found that almost all runs were also catego-

rized as showing a bullying strategy (99% of the crowd Reference

model 1 runs and 100% of the displace Reference model 1 runs)

(Figure 5). When we subsampled displacements and then re-

allocated the behaviors (Reference model 2), we found a different

pattern: 51% of the runs were categorized as having a bullying strat-

egy, the remaining 49% of runs showed evidence of a basic down-

ward heuristic (where individuals aggress indiscriminately toward

any individual ranked below itself) (Figure 5).

Discussion

We developed a framework to examine the implications of splitting

or pooling potentially related behaviors prior to determining how to

construct networks in multilayer network analyses. Our approach

considers general features of the behaviors and whether the behav-

iors belong to the same behavioral context (Step 1), whether behav-

iors could be considered interchangeable (Step 2), and whether

behaviors that are subsampled to match the frequency of the rarer

behavior type could then be considered interchangeable (Step 3).

Reference model 1 (Step 2) demonstrates how the effects of analyz-

ing behaviors separately versus pooled can affect the summary meas-

ures and reference model 2 (Step 3) shows how apparent differences

in the observed dataset could be erased by randomly re-allocating

behaviors to each behavior type. Our approach will help researchers

better weigh their options and the potential implications of deciding

how to analyze multiple behavioral interaction types, especially

when they differ in how commonly they are observed. Taken to-

gether, we concluded that it is likely reasonable to pool the 2 behav-

iors into a single agonistic network for future multilayer network

analyses (Table 1).

We discuss the implications of our framework below. We are un-

able to use these data for more than assessing a single snapshot of

monk parakeet sociality due to the drastically shortened field sea-

son, so we refrain from biological interpretations of the parakeet so-

cial structure and focus on the decision about how to handle data

from 2 similar behavior types. Future work, once we can gather

more long-term data, will focus on these biological interpretations.

Initial analyses within our decision framework (Figure 1, Step 1)

provided support for the potential for pooling the 2 behaviors be-

cause we identified similar patterns between crowd and displace-

ment data. We found that dyads performed a mix of the agonistic

behaviors, indicating that the behaviors were unlikely to be used in

different behavioral contexts. More generally, if there is zero overlap

of dyads performing both types of behavior, the behaviors should

most likely not be pooled into a single network. However, there is

no clear cut-off for when researchers should or should not pool the

2 behaviors if some, but not a majority of dyads use both behaviors

(future work in our group will address this question more directly).

We also found that the network of crowd interactions and the net-

work of displacement interactions were strongly correlated, provid-

ing more evidence for pooling the 2. A simple test for the correlation

strength between the occurrence of behaviors at the dyadic level can

provide an indication of whether behaviors should be pooled or con-

sidered separately but our framework tests for the implications more

directly at the network level and can help researchers better evaluate

these decisions when the correct choice is not obvious. Finally, we

found that the 2 behaviors did not occur at equal frequencies, which

we addressed using 2 different reference models in Steps 2 and 3 of

our framework.

Our examination of whether crowd and displacement behaviors

could be considered interchangeable (Figure 1, Step 2) showed

mixed results for the question of whether the 2 behaviors should be

pooled. For some measures (efficiency, linearity, and steepness), the

observed data for each behavior (both when considered separately

and pooled) did not fall within the range of the first reference model.

This differentiation can be evidence that each behavior should be

considered separately. However, when we investigated further, we

found that these results could be due to differences in how common-

ly each behavior was observed (Figure 1, Step 3). When we sub-

sampled our commonly observed behavior (displacements) to match

the frequency of our rarely observed behavior (crowds) and then

reallocated the behaviors, we found that summary measures of the

behaviors separately generated from this reference model produced

similar results to the observed crowd data (efficiency, linearity and

steepness). These results provide evidence that the indications

0

25

50

75

100

Reference model 1 Ref. model 2
Crowd Displace Displace

P
er

ce
nt

 ru
ns

 w
ith

 s
tra

te
gy

 ty
pe

s

Downward heuristic
Close competitors
Bullying
Undefined

Strategies in runs:

Figure 5. Aggression strategies in observed data and Reference model data-

sets. The observed strategy for “crowd only,” “displace only,” and both

behaviors pooled was the bullying strategy. Of the 100 runs, 99% of the

crowd Reference model 1 runs, 100% of the displace Reference model 1 runs,

and 51% of the subsampled Reference model 2 were consistent with the

observed pattern. Results from Reference model 1 suggest we could pool the

behaviors, whereas the difference between the observed data and the result
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against pooling (from Reference model 1) could be due simply to

data skewed by rarity rather than biological differences between the

2 behaviors. Yet, the pooled data fell outside the reference model

distributions for average path length, efficiency, linearity, and steep-

ness, which suggests that pooling all the data together is different

than reallocating and analyzing behaviors separately and shows that

the full dataset seems to have more information/structure than split-

ting into a crowd or a displacement network allows us to detect.

Three options exist for studies where datasets include 1 behavior

that is rarer than another: (1) the rare interaction type can be

excluded from analyses; (2) data can be pooled across behavior

types; or (3) a different summary measure that is less susceptible to

data sparsity can be used.

Our analyses also show that different types of interactions may

affect individual- and group-level social properties distinctly. A rare

behavior can result in different network outcomes: if we only used

crowd data to summarize parakeet social structure, we would have

concluded that monk parakeets have a less linear, more shallow

dominance hierarchy, slower information transfer but more inform-

ative interactions, and different individuals transferring information

than if we used the more common displacement data (Figures 2–5).

These results demonstrate that it is important to gain a priori know-

ledge about the study system and perform exploratory analyses to

make appropriate decisions in the study design, which reduces the

chance of type 1 errors (Ferreira et al. 2020) and diminishes “metric

hacking” (Webber et al. 2020). Choosing the right social measures

is not only essential to diminish metric hacking but also to appropri-

ately reflect the properties of the dataset. For example, triangle tran-

sitivity should be chosen as a hierarchy structure measure in sparse

datasets as it is less susceptible to data sparsity than linearity and

steepness (Klass and Cords 2011; Shizuka and Mcdonald 2012,

2015).

The aggression strategy comparisons show that the observed

strategies were consistent with strategies in randomly re-allocated

events (Reference model 1) and that strategy type was robust to and

preserved despite these randomizations suggesting that we could

pool the behaviors. However, the strategies were less robust to

manipulations where data were subsampled before being re-

allocated (Reference model 2: part downward heuristic and part bul-

lying strategy). The downward heuristic strategy inferred from

Reference model 2 is similar to the results obtained from an earlier

study with the captive population of monk parakeets (Hobson and

DeDeo 2015). The difference between the observed crowd strategy

and the result from Reference model 2 shows that this difference

cannot be explained by data sparsity alone and shows that the com-

plexity of the social dominance pattern degrades when subsampled

in Reference model 2 (i.e., we lose the signal of the more complex

bullying strategy and detect only a simpler downward heuristic

strategy).

Our framework for examining the implication of splitting or

pooling behaviors is comparable to the reducibility analysis, which

can be performed after the construction of a multilayer network to

analyze whether any layers are redundant (De Domenico et al.

2015). The reducibility analysis measures the number of layers that

can be aggregated without losing any structural information of the

multilayer network. Both this method and our framework approach

can be used to reduce the number of layers. However, our frame-

work can also be implemented in monolayer social network analysis

and other analyses where one has the decision to pool or split behav-

iors within a behavioral context. Thus, the 2 methods could comple-

ment one another: our framework provides insight into which

behaviors to include within a behavioral context and should be

implemented prior to further analyses, whereas the reducibility ana-

lysis expresses which layers are redundant and could be aggregated

and can be used as a latter step in multilayer network analysis. For

example, in 2 studies, the authors used the reducibility analysis to

analyze whether any layer in a multilayer network analysis was re-

dundant, however, they did not specify how they chose to include

behaviors within a behavioral context as a specific layer (Smith-

Aguilar et al. 2019; Pereira et al. 2020).

In this study, we showed how a data-driven approach can be

used to decide whether to pool or keep behaviors separate by apply-

ing it to parakeet social interactions. Researchers can use this frame-

work to investigate the potential implications of pooling or splitting

behaviors in their own datasets. Although we studied the general

pattern of dyadic agonistic relationships and individual- and group-

level social properties, our framework can be used for any behavior

(affiliative, agonistic, etc.) and for any type of analyses where the re-

searcher must make a choice about whether to pool or split behav-

iors, especially when the study question deals with describing or

testing aspects of multilevel sociality. We expect these approaches to

be especially useful in study systems with less-documented social

processes, where relying on extensive knowledge of the study system

to make decisions about which behavioral types are sufficiently simi-

lar or different may be difficult.
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