1,354 research outputs found

    Teaching Social Science Models

    Get PDF

    Occupation and Kinship in a Developing Society

    Get PDF

    Extending DBMSs with satellite databases

    Get PDF
    In this paper, we propose an extensible architecture for database engines where satellite databases are used to scale out and implement additional functionality for a centralized database engine. The architecture uses a middleware layer that offers consistent views and a single system image over a cluster of machines with database engines. One of these engines acts as a master copy while the others are read-only snapshots which we call satellites. The satellites are lightweight DBMSs used for scalability and to provide functionality difficult or expensive to implement in the main engine. Our approach also supports the dynamic creation of satellites to be able to autonomously adapt to varying loads. The paper presents the architecture, discusses the research problems it raises, and validates its feasibility with extensive experimental result

    Comparative Gamma Delta T Cell Immunology: A Focus on Mycobacterial Disease in Cattle

    Get PDF
    A theme among many pathogenic mycobacterial species affecting both humans and animals is a prolonged asymptomatic or latent period that can last years to decades. The mechanisms that favor progression to active disease are not well understood. Pathogen containment is often associated with an effective cell-mediated or T-helper 1 immune profile. With certain pathogenic mycobacteria, such as Mycobacterium avium subspecies paratuberculosis, a shift to active clinical disease is associated with loss of T-helper 1 immunity and development of an ineffective humoral or T-helper 2 immune response. Recently γδ T cells have been shown to play a role early in mycobacterial infections and have been hypothesized to influence disease outcome. The purpose of this paper is to compare recent advancements in our understanding of γδ T cells in humans, cattle, and mice and to discuss roles of γδ T cells in host response to mycobacterial infection

    3-D electrical resistivity tomography using adaptive wavelet parameter grids

    Get PDF
    We present a novel adaptive model parametrization strategy for the 3-D electrical resistivity tomography problem and demonstrate its capabilities with a series of numerical examples. In contrast to traditional parametrization schemes, which are based on fixed disjoint blocks, we discretize the subsurface in terms of Haar wavelets and adaptively adjust the parametrization as the iterative inversion proceeds. This results in a favourable balance of cell sizes and parameter reliability, that is, in regions where the data constrain the subsurface properties well, our parametrization strategy leads to a fine grid, whereas poorly resolved areas are represented only by a few large blocks. This is documented with eigenvalue analyses and by computing model resolution matrices. During the initial iteration steps, only a few model parameters are involved, which reduces the risk that the regularization dominates the inversion. The algorithm also automatically accounts for non-linear effects caused by pronounced conductivity contrasts. Inside conductive features a finer grid is generated than inside more resistive structures. The automated parameter adaptation is computationally efficient, because the coarsening and refinement subroutines have a nearly linear numerical complexity with respect to the number of model parameters. Because our approach is not tightly coupled to electrical resistivity tomography, it should be straightforward to adapt it to other data type

    Surface exposure dating and geophysical tomography of the royal arches meadow rock avalanche, Yosemite Valley, California

    Get PDF
    Since the retreat of glaciers after the Last Glacial Maximum, rock avalanches have occurred intermittently in Yosemite Valley, California. We investigated the distal portion of the oldest of these, the Royal Arches Meadow rock avalanche, which has been partially buried by sediment aggradation. Cosmogenic 10Be exposure ages of boulders within the deposit indicate that the rock avalanche occurred at 16.1 ± 0.3 ka, immediately after deglaciation and thus prior to most aggradation. The interface between the rock avalanche deposit and the underlying glaciofluvial sediments therefore provides an elevation marker of the valley floor at the time of deposition. To identify the elevation of this interface, we collected eight Ground Penetrating Radar (GPR) and five Electrical Resistivity Tomography (ERT) profiles across the rock avalanche. Both methods are sensitive to contrasts between the granitic avalanche deposit and the underlying sediments. By constraining ERT inversions with GPR interfaces that are continuous across the profiles, we identified a single interface, interpreted as the basal contact of the rock avalanche, that separates resistive material from conductive material underneath. The elevation of this approximately horizontal interface is between 1,206 and 1,209 m, roughly 10 m below the modern ground surface, indicating ≈ 10 m of sediment aggradation since deglaciation. Based on topographic expression and depth to this contact, we determined a minimum volume estimate of between 8.1 × 105 m3 and 9.7 × 105 m3 , nearly three times larger than what would be estimated from surface expression alone. Our findings allow reconstruction of the sedimentation history of Yosemite Valley, inform hazard and risk assessment, and confirm that geophysical methods are valuable tools for three-dimensional investigations of rock avalanches, particularly those buried by younger sediments

    Sinusoidal Rumble Strips Noise Evaluation

    Get PDF

    Making SPIFFI SPIFFIER: Upgrade of the SPIFFI instrument for use in ERIS and performance analysis from re-commissioning

    Full text link
    SPIFFI is an AO-fed integral field spectrograph operating as part of SINFONI on the VLT, which will be upgraded and reused as SPIFFIER in the new VLT instrument ERIS. In January 2016, we used new technology developments to perform an early upgrade to optical subsystems in the SPIFFI instrument so ongoing scientific programs can make use of enhanced performance before ERIS arrives in 2020. We report on the upgraded components and the performance of SPIFFI after the upgrade, including gains in throughput and spatial and spectral resolution. We show results from re-commissioning, highlighting the potential for scientific programs to use the capabilities of the upgraded SPIFFI. Finally, we discuss the additional upgrades for SPIFFIER which will be implemented before it is integrated into ERIS.Comment: 20 pages, 12 figures. Proceedings from SPIE Astronomical Telescopes and Instrumentation 201

    Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 515-533, doi:10.5194/bg-6-515-2009Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.This work was funded by the European Union projects CARBOOCEAN (511176-2) and EUROCEANS (511106-2) and is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. Additional support was received from the Swiss National Science Foundation and SCD acknowledges support from the US National Science Foundation (NSF) grant ATM-0628582

    Mortality in Recreational Mountain-Biking in the Austrian Alps: A Retrospective Study over 16 Years.

    Get PDF
    Despite recreational mountain-biking's growing popularity worldwide, the literature on mortality in this leisure sporting activity is scarce. Therefore, the aim of the present study was to investigate the characteristics of fatal accidents as well as resulting dead victims during recreational mountain-biking in the Austrian Alps over the past 16 years. For this purpose, a retrospective study based on Austrian institutional documentation from 2006 to 2021 was conducted. In total, 97 fatalities (1 woman) with a mean age of 55.6 ± 13.9 years were recorded by the Austrian Alpine Police. Of those, 54.6% died due to a non-traumatic (mostly cardio-vascular) and 41.2% due to a traumatic event. Mountain-bikers fatally accidented for non-traumatic reasons frequently belonged to older age classes (p = 0.05) and mostly (73.6%) died during the ascent, whereas traumatic events mainly (70.0%) happened during the descent (p < 0.001). Throughout the examined period, the absolute number of fatalities slightly increased, whereas the mortality index (proportion of deaths/accidented victims) did not (mean value: 1.34 ± 0.56%). Factors such as male sex in general, above average age and uphill riding for non-traumatic accidents, as well as downhill riding for traumatic events, seem to be associated with fatalities during recreational mountain-biking in the Austrian Alps. These results should be considered for future preventive strategies in recreational mountain-biking
    corecore