343 research outputs found

    A textual analysis of media framing of mass shootings : how characteristics surrounding mass shootings are framed in men's and women's magazines

    Get PDF
    The present research attempted to build upon mass shooting studies by analyzing how feature-length magazine articles focusing on these events frame the characteristics surrounding mass shootings in men's and women's health and lifestyle magazines. The researcher conducted a qualitative textual analysis of 24 randomly selected feature-length mass shootings articles in print and online issues of Esquire, Cosmopolitan, GQ and Glamour between January 2012-April 2017. The core findings of this research included how mass shootings almost always fall under one of four frames: individual (internal) blame frames, societal (external) blame frames, profiling the shooter, and recovery and mourning. These articles also presented more complex sub-frames. The sub-frames included: symptoms suffered by the shooter, drugs, medication and counseling, identity, and stereotypes, political and institutional failures, access to firearms, military issues, "never saw it coming," slipping through the cracks, and the victims and survivors of mass shootings as well as community togetherness.Dr. Amanda Hinnant, Thesis Supervisor.Includes bibliographical references (pages 77-81)

    Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells

    Get PDF
    Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid-cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4 degrees C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid-cholesterol microdomains in living cells

    Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment

    Get PDF
    Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2-) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2-, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure

    A Risk-Based Methodology and Tool Combining Threat Analysis and Power System Security Assessment

    Get PDF
    A thorough investigation of power system security requires the analysis of the vulnerabilities to natural and man-related threats which potentially trigger multiple contingencies. In particular, extreme weather events are becoming more and more frequent due to climate changes and often cause large load disruptions on the system, thus the support for security enhancement gets tricky. Exploiting data coming from forecasting systems in a security assessment environment can help assess the risk of operating power systems subject to the disturbances provoked by the weather event itself. In this context, the paper proposes a security assessment methodology, based on an updated definition of risk suitable for power system risk evaluations. Big data analytics can be useful to get an accurate model for weather-related threats. The relevant software (SW) platform integrates the security assessment methodology with prediction systems which provide short term forecasts of the threats affecting the system. The application results on a real wet snow threat scenario in the Italian High Voltage grid demonstrate the effectiveness of the proposed approach with respect to conventional security approaches, by complementing the conventional "N - 1" security criterion and exploiting big data to link the security assessment phase to the analysis of incumbent threat

    Myocardial afterload is a key biomechanical regulator of atrioventricular myocyte differentiation in zebrafish

    Get PDF
    Heart valve development is governed by both genetic and biomechanical inputs. Prior work has demonstrated that oscillating shear stress associated with blood flow is required for normal atrioventricular (AV) valve development. Cardiac afterload is defined as the pressure the ventricle must overcome in order to pump blood throughout the circulatory system. In human patients, conditions of high afterload can cause valve pathology. Whether high afterload adversely affects embryonic valve development remains poorly understood. Here we describe a zebrafish model exhibiting increased myocardial afterload, caused by vasopressin, a vasoconstrictive drug. We show that the application of vasopressin reliably produces an increase in afterload without directly acting on cardiac tissue in zebrafish embryos. We have found that increased afterload alters the rate of growth of the cardiac chambers and causes remodeling of cardiomyocytes. Consistent with pathology seen in patients with clinically high afterload, we see defects in both the form and the function of the valve leaflets. Our results suggest that valve defects are due to changes in atrioventricular myocyte signaling, rather than pressure directly acting on the endothelial valve leaflet cells. Cardiac afterload should therefore be considered a biomechanical factor that particularly impacts embryonic valve development

    Ghrelin regulates proliferation and differentiation of osteoblastic cells

    Get PDF
    Abstract It has previously been reported that growth hormone secretagogues (GHS) may have a role in the regulation of bone metabolism in animals and humans. In this study we evaluated the effect of ghrelin, the endogenous ligand of GHS receptors, on the proliferation rate and on osteoblast activity in primary cultures of rat calvaria osteoblasts. In the same experiments, we compared the effects of ghrelin with those of hexarelin (HEXA) and EP-40737, two synthetic GHS with different characteristics. Both ghrelin and HEXA (10(-11)-10(-8) M) significantly stimulated osteoblast proliferation at low concentrations (10(-10) M). Surprisingly, EP-40737 demonstrated an antiproliferative effect at 10(-9)-10(-8) M, whereas lower concentrations had no effect on cell proliferation. Ghrelin and HEXA significantly increased alkaline phosphatase (ALP) and osteocalcin (OC) production. At variance with these peptides, EP-40737 did not significantly stimulate ALP and OC. The mRNA for GHS-R1a receptors and the corresponding protein were detected in calvarial osteoblasts by RT-PCR and Western blot respectively, indicating that ghrelin and GHS may bind and activate this specific receptor. We conclude that endogenous ghrelin and synthetic GHS modulate proliferation and differentiation of rat osteoblasts, probably by acting on their specific receptor

    1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers

    Get PDF
    yes2D materials such as graphene, LAPONITE® clays or molybdenum disulfide nanosheets are of extremely high interest to the materials community as a result of their high surface area and controllable surface properties. While several methods to access 2D inorganic materials are known, the investigation of 2D organic nanomaterials is less well developed on account of the lack of ready synthetic accessibility. Crystallization-driven self-assembly (CDSA) has become a powerful method to access a wide range of complex but precisely-defined nanostructures. The preparation of 2D structures, however, particularly those aimed towards biomedical applications, is limited, with few offering biocompatible and biodegradable characteristics as well as control over self-assembly in two dimensions. Herein, in contrast to conventional self-assembly rules, we show that the solubility of polylactide (PLLA)-based amphiphiles in alcohols results in unprecedented shape selectivity based on unimer solubility. We use log Poct analysis to drive solvent selection for the formation of large uniform 2D diamond-shaped platelets, up to several microns in size, using long, soluble coronal blocks. By contrast, less soluble PLLA-containing block copolymers yield cylindrical micelles and mixed morphologies. The methods developed in this work provide a simple and consistently reproducible protocol for the preparation of well-defined 2D organic nanomaterials, whose size and morphology are expected to facilitate potential applications in drug delivery, tissue engineering and in nanocomposites.University of Warwick, Materials GRP, EPSRC, The Royal Society, ER

    A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth

    Get PDF
    Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations
    corecore