4,333 research outputs found

    Hie-Isolde High Beta Cavity Study and Measurements

    Get PDF
    The upgrade of the ISOLDE machine at CERN foresees a superconducting linac based on two gap independently phased Nb sputtered Quarter Wave Resonators (QWRs) working at 101.28MHz and producing an accelerating field of 6MV/m on axis. A careful study of the fields in the cavity has been carried out in order to pin down the crucial e-m parameters of the structure such as peak fields, quality factor and e-m power dissipated on the cavity wall. A tuning system with about 200kHz frequency range has been developed in order to cope with fabrication tolerances. In this paper we will report on the cavity simulations. The tuning plate design will be described. Finally the frequency measurements on a cavity prototype at room temperature will be presented.Comment: 5 pages, SRF09 Conference in Berli

    Beam Dynamics Studies for the HIE-ISOLDE Linac at CERN

    Full text link
    The upgrade of the normal conducting (NC) Radioactive Ion Beam EXperiment (REX)-ISOLDE heavy ion accelerator at CERN, under the High Intensity and Energy (HIE)-ISOLDE framework, proposes the use of superconducting (SC) quarter-wave resonators (QWRs) to increase the energy capability of the facility from 3 MeV/u to beyond 10 MeV/u. A beam dynamics study of a lattice design comprising SC QWRs and SC solenoids has confirmed the design's ability to accelerate ions, with a mass-to-charge ratio in the range 2.5 < A/q < 4.5, to the target energy with a minimal emittance increase. We report on the development of this study to include the implementation of realistic fields within the QWRs and solenoids. A preliminary error study is presented in order to constrain tolerances on the manufacturing and alignment of the linac.Comment: 3 pages, 8 figures, 1 table, submitted to the Particle Accelerator Conference (PAC) 2009 in Vancouver. Page formatting changed to US letter siz

    REX-ISOLDE LINAC energy upgrade: superconducting option

    Get PDF

    DMRG Simulation of the SU(3) AFM Heisenberg Model

    Full text link
    We analyze the antiferromagnetic SU(3)\text{SU}(3) Heisenberg chain by means of the Density Matrix Renormalization Group (DMRG). The results confirm that the model is critical and the computation of its central charge and the scaling dimensions of the first excited states show that the underlying low energy conformal field theory is the SU(3)1\text{SU}(3)_1 Wess-Zumino-Novikov-Witten model.Comment: corrections and improvements adde

    CCDTL Prototype: Status Report

    Get PDF

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    BUILDING PERFORMANCE SIMULATION PROGRAMS: BETWEEN “OPERABILITY” AND “ADEQUACY”

    Get PDF
    Energy efficiency in Buildings, combined with an efficient use of the energy provided by renewable sources, are essential objectives set by the revision of the European Energy Performance of Buildings Directive. To achieve these objectives, an accurate estimate of the behavior of the system to be built/improved must be available during all stages of the design process or energy audit (if existing). While designing or improving energy efficiency, other important and associated goals must be ad-dressed, such as environmental health (hygrothermal, acoustic and luminous), costs, environmental sustainability, etc. Having to choose a dynamic simulation program to inform the design process it is necessary to analyze the possibilities offered by different available software, in terms of accuracy and completeness, while taking into account ease of use and included facilities aimed at supporting the design process itself. Over the past years, numerous Building Performance Simulation tools (BPSts) have been developed with the ambition of removing some shortages of existing BPSts in addressing today’s users’ requirements, sometimes by underestimating the reasons for those lacks of functionality. A software improvement that is focused only on usability might oversimplifies the complexity of the model used by the tool, or its use, while a focus on rapid prototyping might respond poorly to the requirements of a certain typology of users. A critical review of today’s requirements and available tools is here presented, with the aim of informing a better awareness of possibilities offered or denied by current BPSts

    Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration

    Full text link
    Reliable long-time storage of arbitrary quantum states is a key element for quantum information processing. In order to dynamically decouple a spin or quantum bit from a dephasing environment, we introduce an optimized sequence of NN control pulses of finite durations \tau\pp and finite amplitudes. The properties of this sequence of length TT stem from a mathematically rigorous derivation. Corrections occur only in order TN+1T^{N+1} and \tau\pp^3 without mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing experiments, a concrete setup for the verification of the properties of the advocated realistic sequence is proposed.Comment: 8 pages, 1 figur

    CCDTL prototypes: test results

    Get PDF
    • …
    corecore