32 research outputs found

    Interdependence between transportation system and power distribution system: a comprehensive review on models and applications

    Get PDF
    The rapidly increasing penetration of electric vehicles in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment protection. Integrating charging facilities, especially high-power chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced, especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted. Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.fi=vertaisarvioitu|en=peerReviewed

    Toward a 21st Century Power Education: A Bright Future Awaits Students in Utah

    No full text

    Improvement of the simultaneous active and reactive power markets pricing and structure

    No full text

    Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems

    No full text
    In this paper, we describe our novel use of network intrusion detection systems (NIDS) for protecting automated distribution systems (ADS) against certain types of cyber attacks in a new way. The novelty consists of using the hybrid control environment rules and model as the baseline for what is normal and what is an anomaly, tailoring the security policies to the physical operation of the system. NIDS sensors in our architecture continuously analyze traffic in the communication medium that comes from embedded controllers, checking if the data and commands exchanged conform to the expected structure of the controllers interactions, and evolution of the system's physical state. Considering its importance in future ADSs, we chose the fault location, isolation and service restoration (FLISR) process as our distribution automation case study for the NIDS deployment. To test our scheme, we emulated the FLISR process using real programmable logic controllers (PLCs) that interact with a simulated physical infrastructure. We used this test bed to examine the capability of our NIDS approach in several attack scenarios. The experimental analysis reveals that our approach is capable of detecting various attacks scenarios including the attacks initiated within the trusted perimeter of the automation network by attackers that have complete knowledge about the communication information exchanged

    Integration of optimal storage operation into marginal cost curve representation

    No full text

    A hybrid network IDS for protective digital relays in the power transmission grid

    No full text
    In this paper, we propose a novel use of network intrusion detection systems (NIDSs) tailored to detect attacks against networks that support hybrid controllers that implement power grid protection schemes. In our approach, we implement specification-based intrusion detection signatures based on the execution of the hybrid automata that specify the communication rules and physical limits that the system should obey. To validate our idea, we developed an experimental framework consisting of a simulation of the physical system and an emulation of the master controller, which serves as the digital relay that implements the protection mechanism. Our Hybrid Control NIDS (HC-NIDS) continuously monitors and analyzes the network traffic exchanged within the physical system. It identifies traffic that deviates from the expected communication pattern or physical limitations, which could place the system in an unsafe mode of operation. Our experimental analysis demonstrates that our approach is able to detect a diverse range of attack scenarios aimed at compromising the physical process by leveraging information about the physical part of the power system
    corecore