82 research outputs found

    The 2008–2010 subsidence of dallol volcano on the spreading erta ale ridge: Insar observations and source models

    Get PDF
    In this work, we study the subsidence of Dallol, an explosive crater and hydrothermal area along the spreading Erta Ale ridge of Afar (Ethiopia). No volcanic products exist at the surface. However, a diking episode in 2004, accompanied by dike-induced faulting, indicates that Dallol is an active volcanic area. The 2004 diking episode was followed by quiescence until subsidence started in 2008. We use InSAR to measure the deformation, and inverse, thermoelastic and poroe-lastic modelling to understand the possible causes of the subsidence. Analysis of InSAR data from 2004–2010 shows that subsidence, centered at Dallol, initiated in October 2008, and continued at least until February 2010 at an approximately regular rate of up to 10 cm/year. The inversion of InSAR average velocities finds that the source causing the subsidence is shallow (depth between 0.5 and 1.5 km), located under Dallol and with a volume decrease between −0.63 and −0.26 × 106 km3/year. The most likely explanation for the subsidence of Dallol volcano is a combination of out-gassing (depressurization), cooling and contraction of the roof of a shallow crustal magma chamber or of the hydrothermal system

    Evidence of Fluid Induced Earthquake Swarms From High Resolution Earthquake Relocation in the Main Ethiopian Rift

    Get PDF
    Fluid overpressure and fluid migration are known to be able to trigger or induce fault slip. However, relatively little is known about the role of fluids on generating earthquakes in some of the major continental rifts. To address this, we investigate the interaction between fluids and faults in the Main Ethiopian Rift (MER) using a large seismicity catalog that covers both the rift axis and rift margin. We performed cross-correlation analysis on four major earthquake clusters (three within the rift and one on the rift margin) in order to significantly improve accuracy of the earthquake relative relocations and to quantify families of earthquakes in which waveforms are similar. We also analyzed variation of seismicity rate and seismic moment release through time for the four clusters. The major results are that for all four clusters the earthquake relocations are 5–15 km deep, aligned to clear N-NNE striking, steeply (>60°) dipping planes. For the three clusters within the rift, the cross-correlation analysis identifies earthquake families that occur in short swarms during which seismic rate and moment release increases. Together, this space and time pattern of the seismicity strongly points toward them being fluid induced, with fluid likely sourced from depth such as mantle derived CO2. In contrast, the seismicity on the rift margin lacks earthquake families, with occurrence of earthquakes more continuous in nature, which we interpret as pointing toward tectonic stress-driven microseismic creep. Overall, our results suggest that deep sourced fluid migration within the rift is an important driver of earthquake activity

    Rendezvous of Two Robots with Constant Memory

    Full text link
    We study the impact that persistent memory has on the classical rendezvous problem of two mobile computational entities, called robots, in the plane. It is well known that, without additional assumptions, rendezvous is impossible if the entities are oblivious (i.e., have no persistent memory) even if the system is semi-synchronous (SSynch). It has been recently shown that rendezvous is possible even if the system is asynchronous (ASynch) if each robot is endowed with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and can remember (i.e., can persistently store) the last received transmission. This setting is overly powerful. In this paper we weaken that setting in two different ways: (1) by maintaining the O(1) bits of persistent memory but removing the communication capabilities; and (2) by maintaining the O(1) transmission capability and the ability to remember the last received transmission, but removing the ability of an agent to remember its previous activities. We call the former setting finite-state (FState) and the latter finite-communication (FComm). Note that, even though its use is very different, in both settings, the amount of persistent memory of a robot is constant. We investigate the rendezvous problem in these two weaker settings. We model both settings as a system of robots endowed with visible lights: in FState, a robot can only see its own light, while in FComm a robot can only see the other robot's light. We prove, among other things, that finite-state robots can rendezvous in SSynch, and that finite-communication robots are able to rendezvous even in ASynch. All proofs are constructive: in each setting, we present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure

    Gathering in Dynamic Rings

    Full text link
    The gathering problem requires a set of mobile agents, arbitrarily positioned at different nodes of a network to group within finite time at the same location, not fixed in advanced. The extensive existing literature on this problem shares the same fundamental assumption: the topological structure does not change during the rendezvous or the gathering; this is true also for those investigations that consider faulty nodes. In other words, they only consider static graphs. In this paper we start the investigation of gathering in dynamic graphs, that is networks where the topology changes continuously and at unpredictable locations. We study the feasibility of gathering mobile agents, identical and without explicit communication capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we consider is the classic 1-interval-connectivity. We focus on the impact that factors such as chirality (i.e., a common sense of orientation) and cross detection (i.e., the ability to detect, when traversing an edge, whether some agent is traversing it in the other direction), have on the solvability of the problem. We provide a complete characterization of the classes of initial configurations from which the gathering problem is solvable in presence and in absence of cross detection and of chirality. The feasibility results of the characterization are all constructive: we provide distributed algorithms that allow the agents to gather. In particular, the protocols for gathering with cross detection are time optimal. We also show that cross detection is a powerful computational element. We prove that, without chirality, knowledge of the ring size is strictly more powerful than knowledge of the number of agents; on the other hand, with chirality, knowledge of n can be substituted by knowledge of k, yielding the same classes of feasible initial configurations

    Initiation of a proto‐transform fault prior to seafloor spreading

    Get PDF
    Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid‐ocean ridges in ocean basins worldwide. The current consensus is that oceanic transform faults initiate after the onset of seafloor spreading. However, this inference has been difficult to test given the lack of direct observations of transform fault formation. Here, we integrate evidence from surface faults, geodetic measurements, local seismicity, and numerical modelling of the subaerial Afar continental rift and show that a proto‐transform fault is initiating during the final stages of continental breakup. This is the first direct observation of proto‐transform fault initiation in a continental rift, and sheds unprecedented light on their formation mechanisms. We demonstrate that they can initiate during late‐stage continental rifting, earlier in the rifting cycle than previously thought. Future studies of volcanic rifted margins cannot assume that oceanic transform faults initiated after the onset of seafloor spreading

    Extension and stress during continental breakup: seismic anisotropy of the crust in Northern Afar

    Get PDF
    Studies that attempt to simulate continental rifting and subsequent breakup require detailed knowledge of crustal stresses, however observational constraints from continental rifts are lacking. In addition, a knowledge of the stress field around active volcanoes can be used to detect sub-surface changes to the volcanic system. Here we use shear wave splitting to measure the seismic anisotropy of the crust in Northern Afar, a region of active, magma-rich continental breakup. We combine shear wave splitting tomography with modelling of gravitational and magmatic induced stresses to propose a model for crustal stress and strain across the rift. Results show that at the Ethiopian Plateau, seismic anisotropy is consistently oriented N–S. Seismic anisotropy within the rift is generally oriented NNW–SSE, with the exception of regions north and south of the Danakil Depression where seismic anisotropy is rift-perpendicular. These results suggest that the crust at the rift axis is characterized by rift-aligned structures and melt inclusions, consistent with a focusing of tectonic extension at the rift axis. In contrast, we show that at regions within the rift where extension rate is minimal the seismic anisotropy is best explained by the gravitationally induced stress field originating from variations in crustal thickness. Seismic anisotropy away from the rift is controlled by a combination of inherited crustal structures and gravitationally induced extension whereas at the Dabbahu region we show that the stress field changes orientation in response to magmatic intrusions. Our proposed model provides a benchmark of crustal stress in Northern Afar which will aid the monitoring of volcanic hazard. In addition we show that gravitational forces play a key role in measurements of seismic anisotropy, and must be considered in future studies. We demonstrate that during the final stages of continental rifting the stress field at the rift axis is primarily controlled by tectonic extension, but that gravitational forces and magmatic intrusions can play a key role in the orientation of the stress field

    Magmatism on rift flanks: insights from ambient noise phase velocity in Afar region

    Get PDF
    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading
    • 

    corecore