89 research outputs found
The 2008â2010 subsidence of dallol volcano on the spreading erta ale ridge: Insar observations and source models
In this work, we study the subsidence of Dallol, an explosive crater and hydrothermal area along the spreading Erta Ale ridge of Afar (Ethiopia). No volcanic products exist at the surface. However, a diking episode in 2004, accompanied by dike-induced faulting, indicates that Dallol is an active volcanic area. The 2004 diking episode was followed by quiescence until subsidence started in 2008. We use InSAR to measure the deformation, and inverse, thermoelastic and poroe-lastic modelling to understand the possible causes of the subsidence. Analysis of InSAR data from 2004â2010 shows that subsidence, centered at Dallol, initiated in October 2008, and continued at least until February 2010 at an approximately regular rate of up to 10 cm/year. The inversion of InSAR average velocities finds that the source causing the subsidence is shallow (depth between 0.5 and 1.5 km), located under Dallol and with a volume decrease between â0.63 and â0.26 Ă 106 km3/year. The most likely explanation for the subsidence of Dallol volcano is a combination of out-gassing (depressurization), cooling and contraction of the roof of a shallow crustal magma chamber or of the hydrothermal system
Evidence of Fluid Induced Earthquake Swarms From High Resolution Earthquake Relocation in the Main Ethiopian Rift
Fluid overpressure and fluid migration are known to be able to trigger or induce fault slip. However, relatively little is known about the role of fluids on generating earthquakes in some of the major continental rifts. To address this, we investigate the interaction between fluids and faults in the Main Ethiopian Rift (MER) using a large seismicity catalog that covers both the rift axis and rift margin. We performed cross-correlation analysis on four major earthquake clusters (three within the rift and one on the rift margin) in order to significantly improve accuracy of the earthquake relative relocations and to quantify families of earthquakes in which waveforms are similar. We also analyzed variation of seismicity rate and seismic moment release through time for the four clusters. The major results are that for all four clusters the earthquake relocations are 5â15 km deep, aligned to clear N-NNE striking, steeply (>60°) dipping planes. For the three clusters within the rift, the cross-correlation analysis identifies earthquake families that occur in short swarms during which seismic rate and moment release increases. Together, this space and time pattern of the seismicity strongly points toward them being fluid induced, with fluid likely sourced from depth such as mantle derived CO2. In contrast, the seismicity on the rift margin lacks earthquake families, with occurrence of earthquakes more continuous in nature, which we interpret as pointing toward tectonic stress-driven microseismic creep. Overall, our results suggest that deep sourced fluid migration within the rift is an important driver of earthquake activity
Positional Encoding by Robots with Non-Rigid Movements
Consider a set of autonomous computational entities, called \emph{robots},
operating inside a polygonal enclosure (possibly with holes), that have to
perform some collaborative tasks. The boundary of the polygon obstructs both
visibility and mobility of a robot. Since the polygon is initially unknown to
the robots, the natural approach is to first explore and construct a map of the
polygon. For this, the robots need an unlimited amount of persistent memory to
store the snapshots taken from different points inside the polygon. However, it
has been shown by Di Luna et al. [DISC 2017] that map construction can be done
even by oblivious robots by employing a positional encoding strategy where a
robot carefully positions itself inside the polygon to encode information in
the binary representation of its distance from the closest polygon vertex. Of
course, to execute this strategy, it is crucial for the robots to make accurate
movements. In this paper, we address the question whether this technique can be
implemented even when the movements of the robots are unpredictable in the
sense that the robot can be stopped by the adversary during its movement before
reaching its destination. However, there exists a constant ,
unknown to the robot, such that the robot can always reach its destination if
it has to move by no more than amount. This model is known in
literature as \emph{non-rigid} movement. We give a partial answer to the
question in the affirmative by presenting a map construction algorithm for
robots with non-rigid movement, but having bits of persistent memory and
ability to make circular moves
Rendezvous of Two Robots with Constant Memory
We study the impact that persistent memory has on the classical rendezvous
problem of two mobile computational entities, called robots, in the plane. It
is well known that, without additional assumptions, rendezvous is impossible if
the entities are oblivious (i.e., have no persistent memory) even if the system
is semi-synchronous (SSynch). It has been recently shown that rendezvous is
possible even if the system is asynchronous (ASynch) if each robot is endowed
with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and
can remember (i.e., can persistently store) the last received transmission.
This setting is overly powerful.
In this paper we weaken that setting in two different ways: (1) by
maintaining the O(1) bits of persistent memory but removing the communication
capabilities; and (2) by maintaining the O(1) transmission capability and the
ability to remember the last received transmission, but removing the ability of
an agent to remember its previous activities. We call the former setting
finite-state (FState) and the latter finite-communication (FComm). Note that,
even though its use is very different, in both settings, the amount of
persistent memory of a robot is constant.
We investigate the rendezvous problem in these two weaker settings. We model
both settings as a system of robots endowed with visible lights: in FState, a
robot can only see its own light, while in FComm a robot can only see the other
robot's light. We prove, among other things, that finite-state robots can
rendezvous in SSynch, and that finite-communication robots are able to
rendezvous even in ASynch. All proofs are constructive: in each setting, we
present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure
Gathering in Dynamic Rings
The gathering problem requires a set of mobile agents, arbitrarily positioned
at different nodes of a network to group within finite time at the same
location, not fixed in advanced.
The extensive existing literature on this problem shares the same fundamental
assumption: the topological structure does not change during the rendezvous or
the gathering; this is true also for those investigations that consider faulty
nodes. In other words, they only consider static graphs. In this paper we start
the investigation of gathering in dynamic graphs, that is networks where the
topology changes continuously and at unpredictable locations.
We study the feasibility of gathering mobile agents, identical and without
explicit communication capabilities, in a dynamic ring of anonymous nodes; the
class of dynamics we consider is the classic 1-interval-connectivity.
We focus on the impact that factors such as chirality (i.e., a common sense
of orientation) and cross detection (i.e., the ability to detect, when
traversing an edge, whether some agent is traversing it in the other
direction), have on the solvability of the problem. We provide a complete
characterization of the classes of initial configurations from which the
gathering problem is solvable in presence and in absence of cross detection and
of chirality. The feasibility results of the characterization are all
constructive: we provide distributed algorithms that allow the agents to
gather. In particular, the protocols for gathering with cross detection are
time optimal. We also show that cross detection is a powerful computational
element.
We prove that, without chirality, knowledge of the ring size is strictly more
powerful than knowledge of the number of agents; on the other hand, with
chirality, knowledge of n can be substituted by knowledge of k, yielding the
same classes of feasible initial configurations
Initiation of a protoâtransform fault prior to seafloor spreading
Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of midâocean ridges in ocean basins worldwide. The current consensus is that oceanic transform faults initiate after the onset of seafloor spreading. However, this inference has been difficult to test given the lack of direct observations of transform fault formation. Here, we integrate evidence from surface faults, geodetic measurements, local seismicity, and numerical modelling of the subaerial Afar continental rift and show that a protoâtransform fault is initiating during the final stages of continental breakup. This is the first direct observation of protoâtransform fault initiation in a continental rift, and sheds unprecedented light on their formation mechanisms. We demonstrate that they can initiate during lateâstage continental rifting, earlier in the rifting cycle than previously thought. Future studies of volcanic rifted margins cannot assume that oceanic transform faults initiated after the onset of seafloor spreading
Extension and stress during continental breakup: seismic anisotropy of the crust in Northern Afar
Studies that attempt to simulate continental rifting and subsequent breakup require detailed knowledge of crustal stresses, however observational constraints from continental rifts are lacking. In addition, a knowledge of the stress field around active volcanoes can be used to detect sub-surface changes to the volcanic system. Here we use shear wave splitting to measure the seismic anisotropy of the crust in Northern Afar, a region of active, magma-rich continental breakup. We combine shear wave splitting tomography with modelling of gravitational and magmatic induced stresses to propose a model for crustal stress and strain across the rift. Results show that at the Ethiopian Plateau, seismic anisotropy is consistently oriented NâS. Seismic anisotropy within the rift is generally oriented NNWâSSE, with the exception of regions north and south of the Danakil Depression where seismic anisotropy is rift-perpendicular. These results suggest that the crust at the rift axis is characterized by rift-aligned structures and melt inclusions, consistent with a focusing of tectonic extension at the rift axis. In contrast, we show that at regions within the rift where extension rate is minimal the seismic anisotropy is best explained by the gravitationally induced stress field originating from variations in crustal thickness. Seismic anisotropy away from the rift is controlled by a combination of inherited crustal structures and gravitationally induced extension whereas at the Dabbahu region we show that the stress field changes orientation in response to magmatic intrusions. Our proposed model provides a benchmark of crustal stress in Northern Afar which will aid the monitoring of volcanic hazard. In addition we show that gravitational forces play a key role in measurements of seismic anisotropy, and must be considered in future studies. We demonstrate that during the final stages of continental rifting the stress field at the rift axis is primarily controlled by tectonic extension, but that gravitational forces and magmatic intrusions can play a key role in the orientation of the stress field
Magmatism on rift flanks: insights from ambient noise phase velocity in Afar region
During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading
- âŠ