10,206 research outputs found

    High energy cosmic ray self-confinement close to extragalactic sources

    Get PDF
    The ultra-high energy cosmic rays observed at the Earth are most likely accelerated in extra-galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E<EcutE<E_{\rm cut}, where Ecut107L442/3E_{\rm cut}\approx 10^{7} L_{44}^{2/3} GeV for low background magnetic fields (B0nGB_{0}\ll nG). For larger values of B0B_{0}, cosmic rays are confined close to their sources for energies E<Ecut2×108λ10L441/4B101/2E<E_{\rm cut}\approx 2\times 10^{8} \lambda_{10} L_{44}^{1/4} B_{-10}^{1/2} GeV, where B10B_{-10} is the field in units of 0.10.1 nG, λ10\lambda_{10} is its coherence lengths in units of 10 Mpc and L44L_{44} is the source luminosity in units of 104410^{44} erg/s.Comment: To Appear in Physical Review Letter

    Contribution to diffuse gamma-ray emission coming from self-confined CRs around their Galactic sources

    Get PDF
    Recent observations of the diffuse Galactic gamma-ray emission by the Fermi-LAT satellite have shown significant deviations from models which assume the same diffusion properties for cosmic rays (CR) throughout the Galaxy. We explore the possibility that a fraction of this diffuse Galactic emission could be due to hadronic interactions of CRs self-confined in the region around their sources. In fact, freshly accelerated CRs that diffuse away from the acceleration region can trigger the streaming instability able to amplify magnetic disturbance and to reduce the particle diffusion. When this happen, CRs are trapped in the near source region for a time longer than expected and an extended gamma-ray halo is produces around each source. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended halos. We find that if the density of neutrals is low, the halos can account for a substantial fraction of the diffuse emission observed by Fermi-LAT, depending on the orientation of the line of sight with respect to the direction of the galactic center.Comment: 8 pages, 2 figs. Proceeding the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Kore

    Dynamical effects of self-generated magnetic fields in cosmic ray modified shocks

    Full text link
    Recent observations of greatly amplified magnetic fields (δB/B100\delta B/B\sim 100) around supernova shocks are consistent with the predictions of the non-linear theory of particle acceleration (NLT), if the field is generated upstream of the shock by cosmic ray induced streaming instability. The high acceleration efficiencies and large shock modifications predicted by NLT need however to be mitigated to confront observations, and this is usually assumed to be accomplished by some form of turbulent heating. We show here that magnetic fields with the strength inferred from observations have an important dynamical role on the shock, and imply a shock modification substantially reduced with respect to the naive unmagnetized case. The effect appears as soon as the pressure in the turbulent magnetic field becomes comparable with the pressure of the thermal gas. The relative importance of this unavoidable effect and of the poorly known turbulent heating is assessed. More specifically we conclude that even in the cases in which turbulent heating may be of some importance, the dynamical reaction of the field cannot be neglected, as instead is usually done in most current calculations.Comment: 4 pages, 1 figure, accepted for publication in ApJ Letter

    An NC1 parallel 3D convex hull algorithm

    Get PDF
    In this paper we present an O(log n) time paridlel algorithm for computing the convex hull of n points in!)?3. This algorithm uses O (nl+a) processors on a CREW PRAM, for any constant O &lt; cr &lt;1. So far, all adequately documented parallel algorithms proposed for this problem use time at least 0(log2! n). In addition, the algorithm presented here is the first parallel algorithm for the three-dimensional convex hull problem that is not based on the serial divide-and-conquer algorithm of Preparat a and Hong, whose crucial operation is the merging of the convex hulls of two linearly separated point sets. The contributions of this paper are therefore (i) an O (log n) time parallel algorithm for the threedimensional convex hull problem, and (ii) a parallel algorithm for this problem that does not follow the traditional divide-and-conquer paradigm.

    Dynamic multiobjective optimization problems: test cases, approximations, and applications

    Get PDF
    After demonstrating adequately the usefulness of evolutionary multiobjective optimization (EMO) algorithms in finding multiple Pareto-optimal solutions for static multiobjective optimization problems, there is now a growing need for solving dynamic multiobjective optimization problems in a similar manner. In this paper, we focus on addressing this issue by developing a number of test problems and by suggesting a baseline algorithm. Since in a dynamic multiobjective optimization problem, the resulting Pareto-optimal set is expected to change with time (or, iteration of the optimization process), a suite of five test problems offering different patterns of such changes and different difficulties in tracking the dynamic Pareto-optimal front by a multiobjective optimization algorithm is presented. Moreover, a simple example of a dynamic multiobjective optimization problem arising from a dynamic control loop is presented. An extension to a previously proposed direction-based search method is proposed for solving such problems and tested on the proposed test problems. The test problems introduced in this paper should encourage researchers interested in multiobjective optimization and dynamic optimization problems to develop more efficient algorithms in the near future

    Native NIR-emitting single colour centres in CVD diamond

    Get PDF
    Single-photon sources are a fundamental element for developing quantum technologies, and sources based on colour centres in diamonds are among the most promising candidates. The well-known NV centres are characterized by several limitations, thus few other defects have recently been considered. In the present work, we characterize in detail native efficient single colour centres emitting in the near infra-red in both standard IIa single-crystal and electronic-grade polycrystalline commercial CVD diamond samples. In the former case, a high-temperature annealing process in vacuum is necessary to induce the formation/activation of luminescent centres with good emission properties, while in the latter case the annealing process has marginal beneficial effects on the number and performances of native centres in commercially available samples. Although displaying significant variability in several photo physical properties (emission wavelength, emission rate instabilities, saturation behaviours), these centres generally display appealing photophysical properties for applications as single photon sources: short lifetimes, high emission rates and strongly polarized light. The native centres are tentatively attributed to impurities incorporated in the diamond crystal during the CVD growth of high-quality type IIa samples, and offer promising perspectives in diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics", NJP-100003.R

    Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx

    Get PDF
    We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons

    The Effect of Advanced Traveller Information Systems (ATIS) on public transport demand and its uncertainty

    Get PDF
    Advanced Traveller Information Systems (ATISs) include a broad range of advanced computer and communication technologies. These systems are designed to provide transit riders pre-trip and real-time information, to make better informed decisions regarding their mode of travel, planned routes and travel times. ATISs include in-vehicle displays, terminal or wayside based information centres, information by phone or mobile and internet. In this article, a Stated Preference survey has been carried out in order to know the preferences of public transport\u2019s customers related to different ATISs and their willingness to pay in Palermo. An ordered probit demand model has been calibrated to determine the potential additional share of demand attracted by the adoption of ATISs. Finally, Monte Carlo simulation has been carried out to appraise the uncertainty on some parameters of the calibrated demand model. The results show that respondents give more importance to the type of information and its cost, whereas they are less interested in the system that provides the information

    Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure

    Full text link
    The temperature dependence of the thermoelectric power, S(T), and the electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2 K < T < 300 K. Long-range magnetic order is suppressed at a p_c of approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature dependences, ranging from a behaviour characteristic for magnetically ordered heavy fermion compounds to a typical behaviour of intermediate-valent systems. At intermediate pressures a large positive maximum develops above 10 K in S(T). Its origin is attributed to the Kondo effect and its position is assumed to reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure
    corecore