31,228 research outputs found
Far-infrared edge modes in quantum dots
We have investigated edge modes of different multipolarity sustained by
quantum dots submitted to external magnetic fields. We present a microscopic
description based on a variational solution of the equation of motion for any
axially symmetric confining potential and multipole mode. Numerical results for
dots with different number of electrons whose ground-state is described within
a local Current Density Functional Theory are discussed. Two sum rules, which
are exact within this theory, are derived. In the limit of a large neutral dot
at B=0, we have shown that the classical hydrodynamic dispersion law for edge
waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size
effects are taken into account.Comment: We have changed some figures as well as a part of the tex
Far-infrared edge modes in quantum dots
We have investigated edge modes of different multipolarity sustained by
quantum dots submitted to external magnetic fields. We present a microscopic
description based on a variational solution of the equation of motion for any
axially symmetric confining potential and multipole mode. Numerical results for
dots with different number of electrons whose ground-state is described within
a local Current Density Functional Theory are discussed. Two sum rules, which
are exact within this theory, are derived. In the limit of a large neutral dot
at B=0, we have shown that the classical hydrodynamic dispersion law for edge
waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size
effects are taken into account.Comment: We have changed some figures as well as a part of the tex
Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase.
Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death
Entanglement Capacity of Nonlocal Hamiltonians : A Geometric Approach
We develop a geometric approach to quantify the capability of creating
entanglement for a general physical interaction acting on two qubits. We use
the entanglement measure proposed by us for -qubit pure states (PRA
\textbf{77}, 062334 (2008)). Our procedure reproduces the earlier results (PRL
\textbf{87}, 137901 (2001)). The geometric method has the distinct advantage
that it gives an experimental way to monitor the process of optimizing
entanglement production.Comment: 8 pages, 1 figure
Interface dynamics in Hele-Shaw flows with centrifugal forces. Preventing cusp singularities with rotation
A class of exact solutions of Hele-Shaw flows without surface tension in a
rotating cell is reported. We show that the interplay between injection and
rotation modifies drastically the scenario of formation of finite-time cusp
singularities. For a subclass of solutions, we show that, for any given initial
condition, there exists a critical rotation rate above which cusp formation is
prevented. We also find an exact sufficient condition to avoid cusps
simultaneously for all initial conditions. This condition admits a simple
interpretation related to the linear stability problem.Comment: 4 pages, 2 figure
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
We examine the existence and structure of particular sets of mutually
unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known
power-of-prime MUB constructions, we restrict ourselves to using maximally
entangled stabilizer states as MUB vectors. Consequently, these bipartite
entangled stabilizer MUBs (BES MUBs) provide no local information, but are
sufficient and minimal for decomposing a wide variety of interesting operators
including (mixtures of) Jamiolkowski states, entanglement witnesses and more.
The problem of finding such BES MUBs can be mapped, in a natural way, to that
of finding maximum cliques in a family of Cayley graphs. Some relationships
with known power-of-prime MUB constructions are discussed, and observables for
BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur
Rotating Hele-Shaw cells with ferrofluids
We investigate the flow of two immiscible, viscous fluids in a rotating
Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic
field is applied. The interplay between centrifugal and magnetic forces in
determining the instability of the fluid-fluid interface is analyzed. The
linear stability analysis of the problem shows that a non-uniform, azimuthal
magnetic field, applied tangential to the cell, tends to stabilize the
interface. We verify that maximum growth rate selection of initial patterns is
influenced by the applied field, which tends to decrease the number of
interface ripples. We contrast these results with the situation in which a
uniform magnetic field is applied normally to the plane defined by the rotating
Hele-Shaw cell.Comment: 12 pages, 3 ps figures, RevTe
On the athermal character of structural phase transitions
The significance of thermal fluctuations on nucleation in structural
first-order phase transitions has been examined. The prototype case of
martensitic transitions has been experimentally investigated by means of
acoustic emission techniques. We propose a model based on the mean
first-passage time to account for the experimental observations. Our study
provides a unified framework to establish the conditions for isothermal and
athermal transitions to be observed.Comment: 5 pages, 4 figures, accepted in Phys. Rev. Let
Enhancing the top signal at Tevatron using Neural Nets
We show that Neural Nets can be useful for top analysis at Tevatron. The main
features of and background events on a mixed sample are projected in
a single output, which controls the efficiency and purity of the
signal.Comment: 11 pages, 6 figures (not included and available from the authors),
Latex, UB-ECM-PF 94/1
- …