30 research outputs found

    Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning

    Get PDF
    Earth's long-term cycling of carbon is regulated from mid-ocean ridges to convergent plate boundaries by mass transfers involving mantle rocks. Here we examine the conversion of peridotite to listvenite (magnesite + quartz rock) during CO2 metasomatism along the basal thrust of the Semail Ophiolite (Fanja, Sultanate of Oman). At the outcrop scale, this transformation defines reaction zones, from serpentinized peridotites to carbonated serpentinites and listvenites. Based on a detailed petrological and chemical study, we show that carbonation progressed through three main stages involving the development of replacive textures ascribed to early stages, whilst carbonate (± quartz) veining becomes predominant in the last stage. The pervasive replacement of serpentine by magnesite is characterized by the formation of spheroids, among which two types are identified based on the composition of their core regions: Fe-core and Mg-core spheroids. Fe zoning is a type feature of matrix and vein magnesite formed during the onset carbonation (Stage 1). While Fe-rich magnesite is predicted to form at low fluid XCO2 from a poorly to moderately oxidized protolith, our study evidences that the local non-redox destabilization of Fe oxides into Fe-rich magnesite is essential to the development of Fe-core spheroids. The formation of Fe-core spheroids is followed by the pervasive (over-)growth of Mg-rich spheroids and aggregates (Stage 2) at near-equilibrium conditions in response to increasing fluid XCO2. Furthermore, the compositions of carbonates indicate that most siderophile transition elements released by the dissolution of primary minerals are locally trapped in carbonate and oxides during matrix carbonation, while elements with a chalcophile affinity are the most likely to be leached out of reaction zones.</p

    Genetic Relations Between the Aves Ridge and the Grenada Back-Arc Basin, East Caribbean Sea

    Get PDF
    The Grenada Basin separates the active Lesser Antilles Arc from the Aves Ridge, described as a Cretaceous‐Paleocene remnant of the “Great Arc of the Caribbean.” Although various tectonic models have been proposed for the opening of the Grenada Basin, the data on which they rely are insufficient to reach definitive conclusions. This study presents, a large set of deep‐penetrating multichannel seismic reflection data and dredge samples acquired during the GARANTI cruise in 2017. By combining them with published data including seismic reflection data, wide‐angle seismic data, well data and dredges, we refine the understanding of the basement structure, depositional history, tectonic deformation and vertical motions of the Grenada Basin and its margins as follows: (1) rifting occurred during the late Paleocene‐early Eocene in a NW‐SE direction and led to seafloor spreading during the middle Eocene; (2) this newly formed oceanic crust now extends across the eastern Grenada Basin between the latitude of Grenada and Martinique; (3) asymmetrical pre‐Miocene depocenters support the hypothesis that the southern Grenada Basin originally extended beneath the present‐day southern Lesser Antilles Arc and probably partly into the present‐day forearc before the late Oligocene‐Miocene rise of the Lesser Antilles Arc; and (4) the Aves Ridge has subsided along with the Grenada Basin since at least the middle Eocene, with a general subsidence slowdown or even an uplift during the late Oligocene, and a sharp acceleration on its southeastern flank during the late Miocene. Until this acceleration of subsidence, several bathymetric highs remained shallow enough to develop carbonate platforms

    Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode

    Get PDF
    © 2018 The Author(s). In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm-1 to 40.1 mScm-1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm-3) at 2.0 mScm-1 that increased to 10.6 mW (10.6 Wm-3) at the highest solution conductivity (40.1 mScm-1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm-3) at 2.0 mScm-1 and 27.4 mW (27.4 Wm-3) at 40.1 mScm-1

    Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning

    Get PDF
    Earth’s long-term cycling of carbon is regulated from mid-ocean ridges to convergent margins by mass transfers involving mantle rocks. Here we examine the conversion of peridotite into listvenite (magnesite+quartz) occurring along the basal thrust of the Semail Ophiolite (Fanja, Sultanate of Oman). At the outcrop scale, this transformation defines reaction fronts, from serpentinized peridotites, to carbonated serpentinites and listvenites. Carbonation of peridotites progressed through distinctive stages, involving the generation of carbonate and/or quartz veins concurrently to the pervasive replacement of serpentinized peridotites by carbonates and quartz. The onset of pervasive carbonation reactions is characterized by the formation of Fe-rich magnesite spheroids and aggregates preserved in listvenites, in the vicinity of antitaxial Fe-rich magnesite veins.We document the changes in reaction textures and carbonate compositions from carbonated serpentinites to listvenites, indicating destabilization of Fe-oxides. We propose that Fe-rich cores of magnesite spheroids result from the breakdown of magnetite into Fe-rich magnesite and hematite, and represent the end product of the early carbonation sequence. Pervasive carbonation induces a change to oxidizing conditions as the reaction progresses. We discuss the linkages between the composition of magnesite replacing the serpentine matrix and variations of the reactive fluid composition and redox conditions, and their possible effects on the speciation of volatiles and mobility of economically-valuable metals

    Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)

    No full text
    The Wadi Dima area (Oman Ophiolite) exposes partially altered to highly serpentinized harzburgites that are cross-cut by intense (>20 Vol%) carbonate veining. We identified a sequence of 3 types of carbonate veins with compositions ranging from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates occur as a fine diffuse vein network, locally replacing olivine cores, penetrative into the serpentinized harzburgites. They have depleted trace elements abundances (e.g., Yb < 0.2 × C1-chondrite) relative to other Wadi Dima carbonates, exhibit negative Ce and positive Y, U anomalies and a broad range in ή13CV-PDB (-5 to -15‰) and ή18OSMOW (18 to 31‰). These compositions are consistent with precipitation after seawater-derived fluids and/or fluids in equilibrium with mantle rocks and serpentines during cooling of oceanic lithosphere (110 to 15°C). Type 2 carbonates are localized in veins, which acted as main flow paths for fluids interacting with peridotites in the exhumed Oman mantle lithosphere (50°C-10°C). The orientation of these veins is controlled by the crystallographic anisotropy of Oman mantle peridotites. Type 2 carbonates record two stages. The first involved the formation of large calcite crystals of composition similar to Type 1 carbonates (trace element depleted; ή13CV-PDB B = -4 to -9‰ and ή18OSMOW = 26 to 30‰), which during the second stage were recrystallized to form dolomite and calcite microcrystals (trace element enriched; ή13CV-PDB = -7 to -13‰ and ή18OSMOW = 29 to 32‰), after fluids sampling different sources including contributions of sediment-derived components. They were most likely formed at shallow depths and record the transition from oceanic to continental settings during late Cretaceous ophiolite obduction. Type 3 veins reactivate Type 2 veins. They comprise dominantly calcite and dolomite microcrystals (Light REE enriched patterns) with isotopic compositions (ή13CV-PDB B ~ -7 to -8‰; ή18OSMOW~ 28 to 32‰) consistent with precipitation at low temperatures (T°<30°C) from surface/meteoric fluids. Type 3 veining is probably triggered by ophiolite uplift during the Oligocene to early Miocene. Our study presents new insights into the role of the initial mantle anisotropy in the orientation of the vein network and of principal flow paths during serpentinization and carbonatization of mantle peridotites. It also highlights the highly variable carbon isotope composition of carbonates and suggest different origins for these heterogeneities: the carbon isotope composition of the early Type 1 carbonates dispersed in the poorly connected peridotites is locally modified by serpentinization reactions whilst the carbon isotope compositions of Type 2 and 3 carbonates record mixing of fluids from different sources in high flow veins.This study was funded by INSU CNRS Tellus project 2016 and Deep Carbon Observatory-Deep Energy community awarded by Alfred P. Sloan Foundation grant “In situ Oxygen and Carbone isotope in Oman Ophiolite basement: new insight of serpentinization, carbonatation and fluid circulation” (Sloan Subaward Number 2090 G UA721). High resolution X-ray microtomography images (ID19 beamline, ESRF, Grenoble, France) were acquired as part of ESRF Experiment ES-277. SE was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework ProgrammeFP7/ 2007-2013 under REA-Grant Agreement n608001

    Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)

    No full text
    International audienceThe Wadi Dima area (Oman Ophiolite) exposes partially altered to highly serpentinized harzburgites that are cross-cut by intense (>20 Vol%) carbonate veining. We identified a sequence of 3 types of carbonate veins with compositions ranging from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates occur as a fine diffuse vein network, locally replacing olivine cores, penetrative into the serpentinized harzburgites. They have depleted trace elements abundances (e.g., Yb < 0.2 × C1-chondrite) relative to other Wadi Dima carbonates, exhibit negative Ce and positive Y, U anomalies and a broad range in ή13CV-PDB (-5 to -15‰) and ή18OSMOW (18 to 31‰). These compositions are consistent with precipitation after seawater-derived fluids and/or fluids in equilibrium with mantle rocks and serpentines during cooling of oceanic lithosphere (110 to 15°C). Type 2 carbonates are localized in veins, which acted as main flow paths for fluids interacting with peridotites in the exhumed Oman mantle lithosphere (50°C-10°C). The orientation of these veins is controlled by the crystallographic anisotropy of Oman mantle peridotites. Type 2 carbonates record two stages. The first involved the formation of large calcite crystals of composition similar to Type 1 carbonates (trace element depleted; ή13CV-PDB B = -4 to -9‰ and ή18OSMOW = 26 to 30‰), which during the second stage were recrystallized to form dolomite and calcite microcrystals (trace element enriched; ή13CV-PDB = -7 to -13‰ and ή18OSMOW = 29 to 32‰), after fluids sampling different sources including contributions of sediment-derived components. They were most likely formed at shallow depths and record the transition from oceanic to continental settings during late Cretaceous ophiolite obduction. Type 3 veins reactivate Type 2 veins. They comprise dominantly calcite and dolomite microcrystals (Light REE enriched patterns) with isotopic compositions (ή13CV-PDB B ~ -7 to -8‰; ή18OSMOW~ 28 to 32‰) consistent with precipitation at low temperatures (T°<30°C) from surface/meteoric fluids. Type 3 veining is probably triggered by ophiolite uplift during the Oligocene to early Miocene. Our study presents new insights into the role of the initial mantle anisotropy in the orientation of the vein network and of principal flow paths during serpentinization and carbonatization of mantle peridotites. It also highlights the highly variable carbon isotope composition of carbonates and suggest different origins for these heterogeneities: the carbon isotope composition of the early Type 1 carbonates dispersed in the poorly connected peridotites is locally modified by serpentinization reactions whilst the carbon isotope compositions of Type 2 and 3 carbonates record mixing of fluids from different sources in high flow veins

    Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: mechanical and chemical behavior of allanite during mylonitization

    No full text
    This study addresses the mechanical and chemical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust petrochronology.\ud \ud Dating of allanite in meta-granodiorite showing variable amounts of strain (from an undeformed protolith to mylonite) at Monte Mucrone (Sesia Zone, NW Italy) gave surprising results. Based on structural and petrographic observations the shear zones at Mt Mucrone are Alpine, yet allanite located within an eclogite facies mylonite yielded Permian ages (208Pb/232Th average age: 287 ± 7 Ma). These mm-sized allanite grains are rimmed by an aggregate of coarse-grained garnet + phengite, thought to derive from former epidote. These aggregates were immersed in a weak matrix that experienced granular flow, and they were thus chemically and mechanically shielded during Alpine mylonitization. In undeformed samples (8a and 8b), two populations of epidote group minerals were found. Allanite forms either coronas around Permian monazite or individual grains with patchy zoning. Both types yield Permian ages (208Pb/232Th age: 291 ± 5 Ma). On the other hand, grains of REE-rich clinozoisite of Cretaceous age are found in undeformed rocks. These grains appear as small fragments with embayed surface outlines and minute satellites or rims around Permian allanite. These (re)crystallized grains are Sr-rich and show mosaic zoning.\ud \ud These results indicate that allanite crystals retained their chemical and isotopic characteristics, and thus their Permian age, as a result of strong strain partitioning between the epidote group porphyroclasts and the eclogite facies matrix in HP-mylonites. The observed partial mobilization of Pb isotopes, which lead to the Cretaceous-aged rims or grains in undeformed samples was facilitated by (re)crystallization of allanite and not by mere Pb diffusion alone under the HP conditions

    Elongated giant seabed polygons and underlying polygonal faults as indicators of the creep deformation of Pliocene to recent sediments in the Grenada Basin, Caribbean Sea

    No full text
    Based on 2D seismic profiles, multibeam and seabed grab cores acquired during the Garanti cruise in 2017, 1-5 km wide seabed giant polygons were identified in the Grenada basin, covering a total area of ∌55000 km2, which is the largest area of outcropping polygonal faults (PF) ever found on Earth so far. They represent the top part of an active 700-1200 m thick underlying polygonal fault system (PFS) formed due to the volumetric contraction of clay- and smectite-rich sediments, initiated in the sub-surface at the transition between the Early to Middle Pliocene. The short axes of the best-fit ellipses obtained from a graphical centre-to-centre method were interpreted as the local orientation of a preferential contraction perpendicular to the creep deformation of slope sediments. In the North Grenada Basin, the polygons are relatively regular, but their short axes seem to be parallel to a N40°E extension recently evidenced in the forearc, possibly extending in the backarc, but not shown in the study area. They are most probably related to a progressive burial due to a homogeneous subsidence. In the South Grenada Basin, the polygons are more elongated and their axes are progressively rotating southeastward towards the depocenter, indicating a creep deformation towards the center of the basin created by a differential subsidence. Seabed polygons and underlying PF could thus be indicative of the deformation regime of shallow sediments related to main slopes controlled by two different basin architectures
    corecore