506 research outputs found

    An Investigative Redesign of the ECG and EMG Signal Conditioning Circuits for Two-fault Tolerance and Circuit Improvement

    Get PDF
    An investigation was undertaken to make the elctrocardiography (ECG) and the electromyography (EMG) signal conditioning circuits two-fault tolerant and to update the circuitry. The present signal conditioning circuits provide at least one level of subject protection against electrical shock hazard but at a level of 100 micro-A (for voltages of up to 200 V). However, it is necessary to provide catastrophic fault tolerance protection for the astronauts and to provide protection at a current level of less that 100 micro-A. For this study, protection at the 10 micro-A level was sought. This is the generally accepted value below which no possibility of microshock exists. Only the possibility of macroshock exists in the case of the signal conditioners. However, this extra amount of protection is desirable. The initial part deals with current limiter circuits followed by an investigation into the signal conditioner specifications and circuit design

    Investigation into the common mode rejection ratio of the physiological signal conditioner circuit

    Get PDF
    The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication

    Tension fatigue analysis and life prediction for composite laminates

    Get PDF
    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth

    LANDSAT follow-on: A report by the applications survey groups. Volume 1: Executive summary

    Get PDF
    Attempts at operational usage of the LANDSAT imagery by non NASA users are studied with particular emphasis on profitable use of the imagery, as contrasted with investigations concerned with research and development of a technology. An evaluation is given of the functional capabilities of the LANDSAT follow-on and ground systems designs in terms of user requirements and desiderata for data measurements, products, and parameters. Applications survey groups (ASGs) were formed for mineral and petroleum exploration, inland water resources, land inventory, and agriculture. The members were drawn from all segments of the user community: Federal agencies, state and local governments or agencies (or from associations of such constituencies), industry and universities. They were selected so that in aggregate they would be able to adequately assess the state-of-the-art in their technical areas and represent this in the ASG deliberations

    Development of spiral-groove self-acting face seals

    Get PDF
    An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s surface speed, 199.9 N/sq cm air pressure, and 645.4K (702 F) air temperature. The maximum speed condition of 243.8 m/s was obtained at a shaft speed of 72,500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine

    Simulation studies of time-control procedures for the advanced air traffic control system

    Get PDF
    The problem of mixing aircraft equipped with time-controlled guidance systems and unequipped aircraft in the terminal area has been investigated via a real-time air traffic control simulation. These four-dimensional (4D) guidance systems can predict and control the touchdown time of an aircraft to an accuracy of a few seconds throughout the descent. The objectives of this investigation were to (1) develop scheduling algorithms and operational procedures for various traffic mixes that ranged from 25% to 75% 4D-equipped aircraft; (2) examine the effect of time errors at 120 n. mi. from touchdown on touchdown time scheduling of the various mix conditions; and (3) develop efficient algorithms and procedures to null the initial time errors prior to reaching the final control sector, 30 n. mi. from touchdown. Results indicate substantial reduction in controller workload and an increase in orderliness when more than 25% of the aircraft are equipped with 4D guidance systems; initial random errors of up to + or - 2 min can be handled via a single speed advisory issued in the arrival control sector, thus avoiding disruption of the time schedule

    Computer program documentation for the patch subsampling processor

    Get PDF
    The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square

    Tropospheric HO2 determination by FAGE

    Get PDF
    The detection efficiency is greatest at low pressures, where the subsequent removal of the HO product by the NO reagent (via HO + NO + M yields HONO + M) is relatively slow. Moreover, nozzle expansion of the air from ambient to low pressures produces a turbulent zone that assists in mixing the reagent with the sample. If the HO product is observed by laser-excited fluorescence, then the other advantages of low-pressure detection by FAGE (Fluorescence Assay with Gas Expansion) also apply. The FAGE instrumental response was calibrated to external HO2 by observing NO decay in the photolysis of HO-CH2O mixtures and by choosing conditions in which HO2 + NO is the only significant NO destruction path. HO2 was determined in urban air

    Investigation of relationships between linears, total and hazy areas, and petroleum production in the Williston Basin: An ERTS approach

    Get PDF
    The author has identified the following significant results. ERTS-1 imagery in a variety of formats was used to locate linear, tonal, and hazy features and to relate them to areas of hydrocarbon production in the Williston Basin of North Dakota, eastern Montana, and northern South Dakota. Derivative maps of rectilinear, curvilinear, tonal, and hazy features were made using standard laboratory techniques. Mapping of rectilinears on both bands 5 and 7 over the entire region indicated the presence of a northeast-southwest and a northwest-southeast regional trend which is indicative of the bedrock fracture pattern in the basin. Curved lines generally bound areas of unique tone, maps of tonal patterns repeat many of the boundaries seen on curvilinear maps. Tones were best analyzed on spring and fall imagery in the Williston Basin. It is postulated that hazy areas are caused by atmospheric phenomena. The ability to use ERTS imagery as an exploration tool was examined where petroleum and gas are presently produced (Bottineau Field, Nesson and Antelope anticlines, Redwing Creek, and Cedar Creek anticline). It is determined that some tonal and linear features coincide with location of present production in Redwing and Cedar Creeks. In the remaining cases, targets could not be sufficiently well defined to justify this method

    Signal detection theory and methods for evaluating human performance in decision tasks

    Get PDF
    Signal Detection Theory (SDT) can be used to assess decision making performance in tasks that are not commonly thought of as perceptual. SDT takes into account both the sensitivity and biases in responding when explaining the detection of external events. In the standard SDT tasks, stimuli are selected in order to reveal the sensory capabilities of the observer. SDT can also be used to describe performance when decisions must be made as to the classification of easily and reliably sensed stimuli. Numbers are stimuli that are minimally affected by sensory processing and can belong to meaningful categories that overlap. Multiple studies have shown that the task of categorizing numbers from overlapping normal distributions produces performance predictable by SDT. These findings are particularly interesting in view of the similarity between the task of the categorizing numbers and that of determining the status of a mechanical system based on numerical values that represent sensor readings. Examples of the use of SDT to evaluate performance in decision tasks are reviewed. The methods and assumptions of SDT are shown to be effective in the measurement, evaluation, and prediction of human performance in such tasks
    corecore