

AIIUNAL AERUNAUIIUS AND SI AUE ADMINISIRAIT

JUNE 1977

CONTRACT NAS 3-19772

NASA Lewis Research Center Cleveland, Ohio

1 Report No C3 135303	2. Government Access	ion No.	3. Recipient's Catalog	1 140				
4. Title and Subtrite DEVELOPMENT OF SPIRAL-GR	DOVE SELF-ACT	ING	5. August Date June 1977					
FACE SEALS			6. Partorning Organi	stion Code				
7. Authorisi			8. Performing Organiz	ation Adport No				
M. O'Brien			LYC 77-41					
1. Automas Organisation Name and Address Avco Lycoming Division								
550 South Main Street		[11. Contract or Grant	No.				
			NAS 3-19772					
12 Second Anter Name and Address			13 Type of Royard at Final Report	nd Period Coveria				
U. S. Army Mobility Research a	and Development	Laboratory	9 February 1976	5-31 March 1977				
National Aeronautics and Space Washington, D. C. 20546	Administration		14. Soundaring Agency	Code				
Project Manager, Lawrence P. NASA Lewis Research Center	, Ludwig, Fluid S Cleveland, Ohio	ystems Camponent	s Division					
16. Alutract								
An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s (500 ft/sec) surface speed, 199.9 N/cm ² (270 ps.a) air pressure, and 645.4K (702°F) air temperature. The maximum speed condition of 243.8 m/s (600 ft/sec) was obtained at a shaft speed of 72, 500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine.								
17 Key Words (Suggested by Author(s)) Spiral-Groove Geametry Film-Ri Experimental Evaluation Endurance Testing	ding Face Seal	18. Destruction Statement Publicly Available						
		-						

* For sale by the National Technical Information Service, Springheld, Virginia, 22161

NASA-C-168 (Rev. 11-75)

FOREWORD

This program was funded by the U. S. Army Air Mobility Research and Development Laboratory Program management was by the Lewis Research Center of the National Aeronautics and Space Administration under Contract NAS 3-19772. The period of performance was 9 February 1976 to 31 March 1977.

Technical direction was provided by the NASA Project Manager, Mr. Lawrence P. Ludwig of the Fluid Systems Components Division. Mr. Leonard W. Schopen, NASA Lewis Research Center, was the Contracting Officer.

The Avco Lycoming Program Manager was Mr. Peter Lynwander. Mr. Michael O'Brien was the principal investigator.

TABLE OF CONTENTS

Page

FOREWORD	iii
LIST OF ILLUSTRATIONS	vi
LIST OF TABLES	ix
SUMMARY	1
INTRODUCTION	2
APPARATUS AND PROCEDURE	3
Test Vehicle	3 3
Seal Design	9
TEST PROGRAM	12
Performance Evaluation, Build I (8.25 Hours) Performance Evaluation, Build II (1.75 Hours) Performance Evaluation, Build III (6 Hours) Endurance Test, Build I (45 Hours)	12 26 38 46 59
CONCLUSIONS AND RECOMMENDATIONS.	, 76
REFERENCES	77
APPENDIX	
D. Country Transport Combon Faces and Seal Seats	78

Proficurder Traces of Carbon Faces and Seal Seats... 78

PRECEDING PAGE BLANK NOT FILM

LIST OF ILLUSTRATIONS

Figure		Page
1	Test Rig and Instrumentation Plan	4
2	Bearing and Seal Compartment	5
3	Test Installation	6
4	Oil Flow Versus Rig Speed	7
5	Test Seal	10
6	Primary Sealing Face	11
7	Forward Seal Prior to Build I	13
8	Aft Seal Prior to Build I	14
9	Close-up of Forward Seal Seat Prior to Build I	15
10	Close-up Aft Seal Seat Prior to Build I	16
11	Close-up of Forward Seal Spiral Groove Geometry Prior to Build I	17
12	Close-up of Aft Seal Spiral Groove Geometry Prior to Build I	18
13	Seal Air Leakage Versus Scaled Pressure, Build I - 91.3m/s (300 ft/sec)	20
14	Seal Air Leakage Versus Sealed Pressure, Build I - 121.9 m/s (400 ft/sec)	21
15	Seal Air Leakage Versus Sealed Pressure, Build I – 152 m/s (500 ft/sec)	22
16	Seal Air Leakage Versus Sealed Pressure, Build I - 182.9 m/s (600 ft/sec)	23
17	Locations of Wear Traces	25
18	Forward Seal and Seat After Build I Testing	27

gure		Page
19	Aft Seal and Seat After Build I Testing	28
20	Forward Seal Spiral Grooves After Build I Testing	29
21	Aft Seal Spiral Grooves: After Build I Testing	30
22	Forward Seal Seat After Build I Testing	31
23	Aft Seal Seat After Build I Testing	32
24	Forward and Aft Sealing Elements After Build II Testing	34
25	Back of Seal Seats After Build II Testing	35
26	Front of Seal Seats After Build II Testing	36
27	Seal Air Leakage Versus Sealed Pressure, Build III - 121.9 m/s (400 ft/sec)	40
28	Seal Air Leakage Versus Sealed Pressure, Build III - 152 m/s (500 ft/sec)	41
29	Seal Air Leakage Versus Sealed Pressure, Build III- 182.9 m/s (600 ft/sec)	42
30	Seal Air Leakage Versus Sealed Pressure, Build III - 213 m/s (700 ft/sec)	43
31	Forward Seal After Build III Testing	4 4
32	Aft Seal After Build III Testing	45
33	Forward Seal Assembly and Seat After Endurance Test, Build I	52
34	Aft Seal Assembly and Seat After Endurance Test, Build I.	53
35	Forward Seal Spiral Groove Geometry After Endurance Test, Build I	54
36	Aft Seal Spiral Geometry After Endurance Test, Build I	55

Figure

Page

37	Forward and Aft Seal Seats After Endurance Test, Build I	56
38	Coking of Housing and Springs After Endurance Test, Build I	57
39	Forward and Aft Seal Assemblies After Endurance Test, Build II	60
40	Internal Coking of Forward Seal After Endurance Test, Build II	61
41	Internal Coking of Aft Seal After Endurance Test, Build II	62
42	Forward Sealing Element After Endurance Test, Build II	63
43	Aft Sealing Element After Endurance Test, Build II	64
44	Forward Seal Seat and Dam After Endurance Test, Build II	65
45	Aft Seal Seat and Dam After Endurance Test, Build	66
46	Interior of Housing Covers, Forward and Aft, After Endurance Test, Build II	67
47	Forward and Aft Windbacks With Bellows Spacers After Endurance Test, Build II	68
48	Forward Seal Housing and Piston Ring Carrier After Endurance Test, Build II	69
49	Aft Seal Housing and Piston Ring Carrier After Endurance Test, Build II	70
50	O. D. View of Forward and Aft Piston Ring Carriers After Endurance Test, Build II	71
51	Forward and Aft Piston Rings After Endurance Test, Build II	72
52	Air Leakage Versus Endurance Hours Build I, Build II	73

.

LIST OF TABLES

Table		Page
I	Instrumentation Plan	8
II	Build I Data Summary	19
ш	Changes in Face Dimensions, Evaluation Test, Build I	24
IV	Changes in Face Dimensions, Evaluation Test, Build II	37
v	Build III Data Summary	39
VI	Changes in Face Dimensions, Evaluation Test, Build III	47
VII	Endurance Test Data Summary	48
VIII	Changes in Face Dimensions, Endurance Test, Build I	58
IX	Changes in Face Dimensions, Endurance Test, Build II	74

SUMMAR Y

An experimental evaluation and a 100-hour endurance test were performed on a spiral-groove geometry film-riding face seal. The spiral-groove lift geometry was evaluated as a substitute for the Rayleigh step lift geometry used in previous test programs (References 1, 2, and 3).

The seal was tested at maximum nonconcurrent operating conditions of 243.8 m/s (800 ft/sec) surface speed, 199.9 N/cm² abs (299 psia) air pressure, and 645.4K (702 °F) air temperature.

The seal performed satisfactorily at all test conditions. Seal wear (lift geometry) occurred during testing but was not a serious problem in regard to completion of the test program. Internal oil coking of the seal assembly was encountered during the endurance test. Build-to-build variations in air leakage were observed and considered to be at least in part due to distortion of the primary sealing element. Seal air leakage measured during the test program is considered to be within a range usable in small gas turbine engines.

INTRODUCTION

Main shaft seals are becoming increasingly critical components in advanced gas turbine engines. High surface speeds in combination with increased air pressures and temperatures can cause excessive heat generation resulting in carbon wear, lubricant degradation and coking, and air or oil leakage.

The purpose of this program was to evaluate spiral-groove geometry self-acting face seals for use in advanced gas turbine engines. The seal is similar, with the exception of the self-acting lift geometry, to seals tested under previous programs (References 1, 2, and 3). In this design, however, the spiral-groove geometry substituted for the Rayleigh step lift pads used in test seals of these previous programs.

Self-acting or film-riding seals offer an alternative to conventional contacting carbon seals and to labyrinth type clearance seals. Conventional contacting carbon seals may not be adequate at the operating conditions of future high-performance gas turbine engines. Labyrinth seals operating at these future conditions will likely be multistaged devices, incorporating pressurization and venting passages. These are not only expensive but also require relatively large amounts of space compared with carbon seals and are difficult to accommodate in small, high-performance engines. Labyrinth seals also allow higher air leakage overboard and into the bearing compartments than carbon seals, placing greater demands on the lubrication system and impacting engine performance.

Self-acting or film-riding seals allow operation in a noncontacting mode except during engine startup and shutdown, at which time they become contacting. During operation in the noncontacting mode, the dynamic sealing surfaces are separated by a small gap which effectively limits air leakage. The fact that the sealing surfaces are noncontacting minimizes heat generation and seal wear.

The experimental evaluation and endurance test was carried out in a test rig that simulated engine conditions in an advanced gas producer turbine bearing location.

APPARATUS AND PROCEDURE

Test Vehicle

The test rig used during the performance evaluation and endurance test is illustrated in Figure 1. The test bearing and seal compartment, which is shown in detail in Figure 2, illustrates the location of the two seal assemblies, one on either side of the bearing.

The test rig prime mover is 5.74.57 kw (100 hp), 30,000 rpm steam turbine. Connecting the steam turbine to the test rig is a 1:3 ratio speed increasing gearbox. The test installation is shown in Figure 3. The test rig shaft is supported by a $35 \times 62 \times 14$ mm split inner race ball bearing in the test position and by a $35 \times 55 \times 10$ mm split inner race ball bearing in the support position. Both bearings are hydraulically mounted with thrust loading accomplished by a combination of coil springs acting on the outer race of the support bearing and a pressure differential maintained across the hub of the shaft. A single batch of MIL-L-23699 oil was used throughout the test program. Oil flow to the test bearing package was varied as a function of shaft speed as illustrated in Figure 4. Oil jet location and orientation are shown in Figure 2. Oil feed temperature into the test package was maintained at $355 \pm 6K$ (180° \pm 10°F) during the test. Support bearing oil flow was maintained at 72.6 kg/hr (160 lb/hr) throughout the test with feed temperature at $344 \pm 6 \text{ K} (160^{\circ} \pm 10^{\circ} \text{F})$.

A reciprocating compressor, in conjunction with electric air heaters, supplied pressurized air to the seal cavities at the desired temperature and pressure.

The volume flow rate of the air leaking through the seals was measured with rotameters as an indication of seal performance. The air oil mixture from the bearing compartment passed through the test rig scavenge system (minimum area - 93 mm^2 (1.44 in²)) and into a static air-oil separator prior to the airflow measurement.

Recorded Parameters

Instrumentation incorporated in the test rig is listed in Table I. The location of the pertinent instrumentation is shown in Figure 1. All measurements were made with instruments calibrated in English units that were then converted to SI units.

Figure 2. Test Bearing and Seal Compartment.

Figure 4. Oil Flow Versus Rig Speed.

TABLE I. INSTRUMENTATION PLAN

			Correspond-
Parameter To			ing Number
Be Measured	Sensing Device	Location	in Figure 1
Shaft Speed	Magnetic pickup	Steam turbine shaft	8
Air Pressure	Gage	Fwd wheel cavity	9
	Gage	Fwd seal cavity	12
	Gage	Aft seal cavity	3
Air Temperature	Thermocouple	Fund wheel cavity	10
-	Thermocouple	Fwd seal cavity	11
	Thermocouple	Aft seal cavity	4
Seal Air Leakage	Glass tube	Scavenge air-oil	7
	rotameter	mixture is passed th	nrougn
		a static separator a	ng the
		dry airitow is passe	:a
		through the nowmet	er
Oil Temperature	Thermocouple	Oil feed line	2
	Thermocouple	Scavenge line	7
Oil Flow	Glass tube rotameter	Oil feed line	2
Oil Pressure	Gage	Oil feed line	2
Bearing Cavity Pressure	Gage	Within bearing cavi	t y 6
Scavenge Pressure	Gage	Scavenge line	7
Scal Temperature	Thermocouple	Seal case or carbon	5
Vibration	Velocity pickup	Test rig housing	1
Chips	Chip detector	Scavenge line	7

Spiral Groove Self-Acting Seal Design

The test seal illustrated in Figure 5 includes the following items and design features: The seal utilizes a primary sealing element of composite construction consisting of a carbon graphite ring (sealing element) retained with an interference fit at its outside diameter by a TZM alloy retaining band. Anti-rotation provisions are made through the use of three carbon blocks which are mounted in a TZM retaining band and are accommodated in slots in he face of the primary sealing element contains the seal housing. the self-acting lift geometry (spiral grooves) and the sealing dam (Figure 6). The secondary seal is a straight-cut, pressure-balanced carbon-graphite piston ring which is mounted in the seal housing. The piston ring seals against a bore provided by the piston ring carrier and against the groove wall. The carrier also serves to transmit and distribute the coil spring load to the primary sealing element. The load of the coil spring urges the primary sealing element against the seal seat. The rotating seal seat mates with the face of the primary sealing element to produce the primary sealing interface.

The seal seat is manufactured from TZM, a titanium molybdenum alloy, chosen for its low coefficient of thermal expansion and high thermal conductivity. The sealing face of the seat is flame sprayed with chronic carbide and finished to a high degree of flatness. The seat is clamped by a machined bellows spacer to reduce clamping load, thereby reducing clamping-induced distortions.

The design of the primary sealing element is such that an increase in closing force is produced as sealed pressure is increased. During operation, this closing force plus the axial spring load is balanced by the force generated by the spiral grooves. The spiral groove lift force, for a given groove geometry, is a function of sliding velocity, the sealed fluid and its pressure, the viscosity (temperature) of the sealed fluid, and the separation between the sealing element and seal seat. When the seal is operating at a particular sliding velocity, sealed pressure, and temperature, the separation between the sealing element and the seat adjusts until the closing force is balanced. This establishes the leakage clearance. Ideally, this clearance should be as small as possible to minimize air leakage, but practical considerations such as assembled seat and primary sealing element flatness, along with pressure, temperature, and speed-induced distortions of these items limit achievable minimum operating clearances. In practice, this operating clearance is on the order of .0005 cm (.0002 in).

Figure 5. Test Seal.

PRIMARY SEALING FACE

Figure 6. Primary Sealing Face.

11

.

TEST PROGRAM

The test program was divided into two parts: performance evaluation test and an endurance test. During the performance evaluation test, the test seals were subjected to various combinations of sealed pressure and surface speed for short amounts of time (15 or 30 minutes, depending upon the specific point) to reveal any potential operating problems or limits. The seals were then subjected to an endurance test, which encompassed three pressure levels and six speed ranges. The details of the test program follow.

Performance Evaluation, Build I (8.25 Hours)

Prior to the beginning of the performance evaluation, photographs were taken to document the appearance of the seals. (See Figures 7 and 8). Closeups of the seal seat and spiral-groove geometry are shown in Figures 9 through 12.

Performance data was obtained at 27 test points during Build I testing. The first six points were maintained for .5 hour each, while the remaining points were maintained for .25 hour each. Data obtained are summarized in Table II. Maximum surface speed reached was 182.9 m/s (600 ft/sec). Maximum sealed pressure was 148.2 N/cm^2 abs (215 psia).

Seal Air Leakage

Seal air leakage as a function of air side pressure for the various surface speeds run is presented in Figures 13 through 16. Air leakage increases as a function of sealed pressure as is expected. A general trend of increasing leakage with speed is seen (and expected), but because of spread in the data it is not exhibited consistently. Extraneous leakage from thermocouple passages, metal gaskets, and press fit joints undoubtedly make up a portion of the spread. The general level of seal air leakage is considered to be within a usable range for application in small gas turbine engines.

Seal Wear

At the completion of Build I testing, changes in seal face dimensions were measured, and seal wear was determined. Table III illustrates these dimensions. Wear was monitored in three locations at four equally spaced angular positons (Figure 17). These locations consisted of the sealing dam, the land area adjacent to and outboard of the spiral groove, and the surface near the ID of the sealing element. Average wear after Build I testing was as follows:

Figure 7. Forward Seal Prior to Build I.

		, L	1	1	1	1	•	•		1	1	1	1	1	1	•	1	1	1	1	1	1	1	,	1	1	1	1	ı	
			1				<u> </u>			_							_													
	ą	2		1	1	1	1	۱	1	1	1	ł	•	1	1	1	ł	1	ı	1	ł	1	1	I	•	•	1	•	1	:
	LIE	d.		1	1	1	I	1	1	1	1	1	1	ī	1	1	1	1	1	1	1	ı	1	1	:	1	I	1	1	1
	SEA	₹.		,	1	1	1	,	1	1	1	ł	1	1	1	1	•	,	1	1	1	1	1	,	1	,	1	1	1	•
		(lb/æc)		0900	8703.	8700-	0054	8	.020	.0031	.0031	.0042	9064	.0058	8969	.883	80 80	.0074	828.	.0032	.0038	.0056	.045	.0051	.0057	.0062	370	9900.	.0074	1800.
	ALRELOW	(SCRM)		4.8	3.8	3.8	4.2	5.0	5.5	2.5	2.5	3.3	5.0	4.6	5.3	¢.,	6.7	5.8	2.0	2.5	3.0	4.4	3.5	4.0	4.5	4.9	5.5	5.2	5.8	6.4
ARY		(Kg/s)		.0027	.0022	.0022	.0024	.0028	1000	2014	.0014	.0019	.0028	.0026	.0030	.0037	.0038	.0033	1100.	.001	-100.	.0025	.0020	.0022	.0026	.0028	.0031	.0029	.0033	.0036
N SUMM	PRESSURE	(PSIA)		24.4	24.7	24.5	25.7	24.7	29.7	21.7	22.7	25.7	23.2	29.2	28.7	29.7	30.7	29.7	19.7	21.7	24.7	27.7	22.7	24.7	26.7	29.7	26.7	2.7	29.7	32.7
LD I DAT/		(N/cm ² abs)		16.8	17.0	16.9	17.7	17.0	20.5	17.7	15.7	17.7	17.4	18.1	19.8	20.5	21.2	20.5	13.6	15.0	17.0	16.1	15.7	17.0	18.4	20.5	18.4	1.91	20.5	22.5
E II. BUI	SSURE	(PSIA)		115	115	165	165	215	215	115	115	115	165	165	165	215	215	215	115	115	115	115	165	165	165	165	215	215	215	215
TABI,	AIR PRE	(N/cm ² dbs)		79.3	79.3	113.8	113.8	148.2	148.2	79.3	29.3	79.3	113.8	113.8	113.8	148.2	148.2	148.2	29.3	79.3	79.3	79.3	113.8	113.8	113.8	113.8	148.2	148.2	148.2	148.2
	0	(RPM)		26,900	35,900	26, %0	35,900	26,900	35, 900	26,900	35,900	45, 100	26,900	35,900	45, 100	35,900	45, 100	45, 100	26,400	35,900	45, 100	54, 100	26,900	35,900	45, 100	54, 100	26,900	35,900	45, 100	54, 100
	SPEE	(FT/SEC)		300	84	300	8	8	2	3.00	400	90 <u>5</u>	300	8	500	6	500	500	30	4 00	200	60	800	400	500	009	300	8	500	% 0
		N/S		91.4	121.9	91.4	121.9	91.4	121.9	91.4	121.9	152.4	91.4	121.9	152.4	121.9	152.4	152.4	91.4	121.9	152.4	182.9	91.4	121.9	152.4	182.9	91.4	121.9	152.4	182.9
		RUN	1		2		4	5	\$	~	е В	6	2	-	12	13	14	15	16	17	18	16	2	21	22	23	24	57	\$	27

19

Figure 13. Seal Air Leak je Versus Sealed Pressure, Build I - 91.3 m/s (300 ft/sec).

Figure 14. Seal Air Leakage Versus Sealed Pressure, Build I - 121.9 m/s (400 ft/sec).

Figure 15. Seal Air Leakage Versus Sealed Pressure, Build I - 152 m/s (500 fi/sec).

Figure 16. Seal Air Leakage Versus Sealed Pressure, Build I - 182.9 m/s (600 ft/sec).

	1.D - cm(in) .00305(.00120) .00285(.001125) .00267(.00105) .003175(.00125)	1. D - an(in) 00 30 4. 00120) 00244. 00109 00254(. 00109) 00258(. 001175) 002581(. 001106)	l.D - cm(jn) 5).000127(.00005)
ATION TEST,	Aft Seed Dan - cm(in) 00305 (. 001200) .00279 (. 00120) .00267 (. 00120) .002889(. 00120)	At Seed Dan - am(in) .00305 (.00120) .002667 (.00109) .00365 (.00123) .00285 (.00123)	Dan - cm(in) , 000032 (, 00001;
IONS, EVALU	Groove - cm(in) 00305 (.001200) 00279 (.00110) .00267 (.00105) .00288 (.001138)	Gioove - cm(Jn) 00305 (.00120) 002667 (.00120) 002730 (.001075) 00305 (.00113)) Gioove - cm(in) ,000019 (,000008)
TABLE III. CHANGES IN FACE DIMENSIO BUILD I	Forward Seal (new) Condition forward Seal (new) Lachore Build a - cm (in) Dam - cm(in) 1.D cm(in) Lacation G 0 (.000550) .001330 (.000525) .001397 (.000550) 1 0 0 0 (.000550) .001390 (.000550) .001397 (.000555) 2 .00 0 0 (.000555) .001397 (.000575) .001397 (.000575) 3 .00 .00 0 (.0005575) .001446 (.000575) .001397 (.000575) 3 .00 .00 0 (.000575) .001430 (.000575) .001397 (.000575) 3 .00 .00 0 (.000575) .001430 (.000575) .001397 (.000575) 4 .00	Forward Seal Condition After Build After Build ve - cm(in) Dam - cm(in) 1.D -cm(in) Location Q (100600) 00152 (100060) 00152 (1000475) 00101 1 0 (100055) 00139 (100055) 00102 (1000475) 00127 (10005) 2 0 (1000550) 00139 (1000575) 00127 (10005) 3 0 0 0 (2000530) 00139 (100055) 00127 (10005) 3 0	Net Average WeadBuild 1) ove - cm(in) Dam - cm(in) 1.D - cm(in) 24 (.000019) .000013 (.000013) 000127 (.000050)

24

Forward Seal Shown

٠

.

.

,

Aft Seal is mirror image

Traces taken at 4 equally spaced and number locations. Numbered locations are in direction of rotation and identified by a scribe line on L.D.

Figure 17. Locations of Wear Traces.

Forward Seal

Sealing dam	-	.000032 cm (.000013 in.)
Land adjacent groove	-	.000124 cm (.000049 in.)
Surface near ID	-	.000127 cm (.000050 in.)
Face average	-	.000094 cm (.000037 in.)
Average rate	-	.000011 cm/hr (.000004 in./hr)
Mimimum remaining groove depth	-	.000108 cm (.000425 in.)

Aft Seal

Sealing dam	-	.0000 318 cm (.000013 in.)
Land adjacent groove	-	.000019 cm (.000008 in.)
Surface near ID	-	.000127 cm (.000050 in.)
Face average	-	.000059 cm (.000023 in.)
Average rate	-	.000010 cm/hr (.000003 in./hr)
Minimum remaining groove depth	-	.002667 cm (.001050 in.)

Wear was found to be greatest and the appearance of rubbing most evident near the ID of the face. Wear of the sealing dam was uniform and very light in comparison with that experienced in previous programs (Reference 1). Figures 18 and 19 show the forward and aft seal assemblies after test. Close-up views of the spiral grooves and seats are shown in Figures 20 through 23.

The test rig was rebuilt with the same test seals to complete the performance evaluation.

Performance Evaluation, Build II (1.75 Hours)

Air Leakage

Air leakage results of Build II testing were not reported due to an anomaly in the build of the test rig. All data points were rerun during Build III testing. An out-of-position windback on the aft side of the test bearing package provided a direct air leakage path beneath the seal seat. The forward seal seat was reversed in position providing a bare TZM lapped surface to mate with the carbon sealing face.

Seal Wear

The forward sealing element experienced extremely heavy wear operation under this condition. The aft seal experienced heavy wear also but appeared to be in good condition, despite operation with the loose seat. Initial spiral groove depth of the aft seal was .00287 cm (.00113 in.) compared to .001349 cm (.00055 in.) depth of the forward seal groove. Because of the initially deeper grooves, the aft seal was still usable despite the wear. Observed seal wear was as follows:

Forward Seal

Sealing dam	-	.000556 cm (.000219 in.)
Land adjacent groove	-	.000457 cm (.000180 in.)
Surface near ID	-	.000349 cm (.0001581 in.)
Face average	-	.000454 cm (.000179 in.)
Average rate	-	.000260 cm/hr (.000102 in./hr)
Mininum remaining groove depth	-	.000702 cm (.000300 in.)

Aft Seal

Sealing dam	-	.000175 cm (.000069 in.)
Land adjacent groove	-	.000188 (.000074 in.)
Surface near ID	-	.000533 cm (.000210 in.)
Face average	-	.000230 cm (.000118 in.)
Average rate	-	.000171 cm/hr (.000067 in./hr)
Minimum remaining groove depth	-	.002413 cm (.000950 in.)

Figure 24 illustrates the forward and aft sealing elements after Build II testing. Figure 25 illustrated the back (normally nonsealing side) of seal seats with the forward seat illustrating contact marks from sealing element due to it being reversed. A wear ring on the aft seat, caused by unclamped operation can be seen. Figure 26 shows the opposite side (normally the sealing side) of the seats (contact side for aft seat). The forward sealing element, exhibiting heavy wear and shallow spiral-groove geometry, was replaced with a new part of Build aff testing. Table IV illustrates changes in face dimensions after Build II testing.

> ORIGINAL PAGE IS OF POOR QUALITY

	ABLE IV. CHA TES	NGES IN FACE DIM T, BUILD II	ENSIONS, EV	ALUATION	
	Forward Seal (new)	Condition Before Build	1.1	Aft Seal	
Groove - cm (in)	Dam - cm(in)	l.D cm(in) Location	Groove - cm(in)	0am - cm(in)	1. D - cm(in)
.00152 (.00060) .00121 (.000425) .00139 (.00055) .00139 (.00055)	.00152 (.00060) .00121 (.000475) .00139 (.00055) .00146 (.000575)	.00152 (.0006U) 1 .00121 (.000425) 7 .00108 (.000425) 3 .00127 (.00050) 4	.00305 (.00120) .032667 (.00105) .00273 (.001075) .00305 (.00113)	.00305 (.00120) .002667 (.00105) .002667 (.00105) .00305 (.00120)	.00305(.00120) .002667(.00105) .90254(.00100) .00281(.001175)
.00135 (. 2053)	.00140 (.00055)	.00127 (.0005) Average	.00287 (.00113)	.00285 (.001125)	.00281(.001106)
	Forward Sec!	Condition After Build		Aft Seal	
Groove - cm()n) .001016 (.0004) .00082 (.000325) .000762 (.00030) .000953 (.000375)	Dam - cm(in) .001916 (.0004) .000508 (.0002) .000762 (.0003) .00108 (.000425)	1.D -cm(in) Location .001016 (.0004) 1 .00082 (.000323) 2 .000762 (.000320) 3 .00108 (.000425) 4	Groove - cm(in) .00273 (.001075) .00254 (.0010) .002413 (.00095) .00305 (.00120)	Dum - cm(in) .00273 (.001075) .00254 (.0010) .00241:(.00095) .00268 (.001056)	1. D - cm(in) .00254(.0010) .00238(.0009375) .00203(.0008) .002421(.00095)
,000889 (,000350)	.000840 (.000331)	, 00092 4, 000363)Average	.00268 (.001056)	.002.68 (.001056)	
Groove ∽ cm(jn) .000457 (,00018)	Dan - an(in) .000554 (.000219)	Net Averag Wea(Build V.C - cm(in) . 000349 (.0001375)	• [1] Groove - cm(in) . 000188 (. 000074)	Dam - cm(in) .000175 (.000069)	1.D - cm(in) .000533(.00021)

Performance Evaluation, Build III (6 Hours)

Data were taken at 24 test points during Build III testing. The duration of each test point was .25 hour. Maximum sealed pressure was 199.9 N/cm² abs (290 psia). A summary of test points run is presented in Table V.

Air Leakage

Air leakage data plotted as a function of airside pressure for the various surface speeds run is presented in Figures 27 through 30. As in Build I testing, air leakage increased as a function of sealed pressure and generally increased with shaft speed. The data exhibited spread as did Build I data, and a similar explanation *pplies*. Air leakage was considerably higher than encountered during Build I testing at equivalent conditions. An investigation was made after disassembly with the following results:

Forward Seal

Aft Seal

Dam flatness	.002230 cm (.000875 in.)*.000508 cm (.000200 in.)*
Seat flatness	.000097 cm (.000038 in.) .000170 cm (.000067 in.
Piston ring carrier ID	.001778 cm (.000700 in.) .002286 cm (.000900 in.)
Piston ring carrier flatness	.000152 cm (.000060 in.) .000508 cm (.000200 in.)

(*Suspect Items)

Considering blueprint requirements, the suspect items were identified as the sealing elements (flatness) and the aft piston ring carrier (flatness). These items were distorted significantly beyond blueprint flatness requirements (2 helium lightbands). The suspect items were changed prior to rebuilding for the endurance test. The seal seats were also changed since they were slightly over the desired flatness, and spare new hardware was available.

Seal Wear

The post-test condition of the seals was documented in Figure 31 and 32. Changes in the seal face dimensions after Build III testing were measured with the following average wear results:

Forward Seal

Sealing dam	-	.000175 cm	(.000063	in.)
Land adjacent groove	-	.000260 cm	(.000103	in.)

~	- 너	8-	174	98	38	Ş	\$	472	432	\$	470	824	0	482	8	260	\$	282	472	200	\$	F 82	514	424	472	1516	
MP	_	×	429	615	651	657	681	a1	680	2	725	ŝ	865	101	655	515	19 9	537	22	755	721	137	769	679	12	2	
ALTE	WD	*	192	350	385	8	3/4	1 0	38	80	412	372	358	419	370	99	386	260	8	\$	410	\$30	\$	368	ş	\$	
3	щ 	×	362	4 <u>7</u>	3	621	629	<u></u>	645	645	667	62	613	674	ŝ	515	2	515	675	\$	\$\$5	<u>8</u> 8	Z	623	659	20	
>	(n. /)		120.	10.	.013	.019	610.	.023	.023	.023	.027	.022	.020	.022	.015	020.	.022	.017	10.	.019	.02	.024	.025	.020	.022	.027	
AIRFLOV	10000	(minc)	16.5	0. 0	10.2	15.0	15.0	18.0	18.0	18.0	21.0	17.5	16.0	17.0	12.0	16.0	17.0	13.0	13.0	15.0	16.5	18.5	20.02	16.0	17.0	21.0	
		10.00	.0095	.0050	.0059	9900.	.008	.0104	.0104	.010.	.0118	.010	1600.	.0095	.0068	1600.	.0095	.0073	6400.	.0086	.0095	.0104	E110.	1600.	.0095	.0118	
PRESSURE	10111	INICII	37.7	40.7	41.7	36.7	39.7	42.7	39.7	44.7	48.7	39.7	34.7	40.7	35.7	43.7	46.7	34.7	38.7	42.7	41.7	45.7	46.7	40.7	46.7	52.7	
			26.0	28.1	28.8	25.3	27.3	29.4	27.4	30.8	33.6	27.3	23.9	28.1	24.6	30.1	32.2	23.9	26.7	29.4	28.8	31.5	32.2	28.1	32.2	1 36.3	
ssure		(FSIA)	165	165	165	215	215	215	265	265	265	290	270	230	165	165	165	215	215	215	265	265	265	270	290	28	
AIR PRE		(N/ cm = cbs)	113.8	113.8	113.8	148.2	148.2	148.2	182.7	182.7	182.7	199.9	199.9	199.9	113.8	113.8	113.8	1.48.2	148.2	148.2	182.7	182.7	182.7	199.9	199.9	199.9	
D	11100	(Krm)	35,900	45, 100	54, 100	35,900	45, 100	54.100	35,900	45, 100	54, 100	35,900	45, 100	54, 100	45, 100	54, 100	62,900	45, 100	54, 100	62, 900	45, 100	54, 100	62,900	45, 100	54, 100	62,900	
SPEI			400	<u></u> 28	609	400	500	609	8	500	609	400	8 <u>5</u>	89 9	500	89	28	ŝ	88	82	200	8 ⁹	82	200	88	700	
		Ś	121.9	152.4	162.9	121.9	152.4	182.9	121.9	152.4	142.9	121.9	152.4	182.9	152.9	182.4	213.4	152.4	182.9	213.4	152.4	182.9	213.4	152.4	182.9	213.4	
		NDX	28	29	00	5	32	33	ž	35	8	37	38	39	40	4	42	E4	4	45	\$	47	48	49	50	51	

.

•

•

٠

•

ORIGE AF FACE A

Figure 27. Seal Air Leakage Versus Sealed Pressure, Build III - 121.9 m/s (400 ft/sec).

Figure 28. Seal Air Leakage Versus Sealed Pressure, Build III - 152 m/s (500 ft/sec).

SEALED PRESSURE

Figure 29. Seal Air Leakage Versus Sealed Pressure, Build III - 182.9 m/s (600 ft/sec).

.

Figure 30. Seal Air Leakage Versus Sealed Pressure, Build III - 213 m/s (700 ft/sec).

Figure 32. Aft Seal After Build III Testing.

Surface near ID	-	.000445 cm (.000175 in.)
Face average	-	.000293 cm (.000115 in.)
Average rate	-	.000048 cm/hr (.000019 in./hr)
Minimum remaining groove depth	-	.002349 cm (.000925 in.)
Aft Se	al	
Sealing dam	-	.000015 cm (.000006 in.)
Land adjacent groove	-	none measurable
Surface near ID	-	.000039 cm (.000015 in.)
Face average	-	.000028 cm (.000011 in.)
Average rate	-	.000005 cm/hr (.000002 in./hr)
Mininum remaining groove depth	-	.002413 cm (.000950 in.)

Maximum wear occurred at the surface near the 1D of the sealing element. Average remaining groove depth (self-acting mechanism) was .002570 cm(.0010:0 in.) for the forward seal and .003030 cm (.001190 in.) for the aft seal. Face dimensions are summarized in Table VI.

Build III testing completed the performance evaluation.

Endurance Test, Build I (45 hours)

The endurance test encompassed 100.2 hours of operation at surface speeds to 243 m/s (800 ft/sec), sealed pressure to 148.14 N/cm² abs (215 psia), and sealed air temperatures of 545.4 K (702°F). A summary of the data points run is presented in Table VII. A test rig bearing problem necessitated interruption of the endurance test after 45 hours of operation. The test rig was rebuilt and seal hardware (seats, piston ring carriers, piston rings, and primary sealing elements) was changed. The damaged seal assemblies are pictured in Figures 23 through 38. During the failure, the seal seats contacted the seal housing, and the shaft rubbed the ID of the carbon sealing elements. The spiralgroove geometry remained intact except for radial cracks. Wear data was obtained but may have been influenced by the failure. These data are presented in Table VIII. Inspection of the seal housings revealed substantial oil coking within the housings and on some of the compression springs, tending to clog the coils. The interior of both seal housings and some typical coked springs are shown in Figure 38. The piston

JATION TEST,	Aft Seal Dem - contin)	002730 (.001075) .002544(.001000) 002540 (.001000) .002380(.000938) 002413 (.000950) .002030(.000800) 003050 (.001200) .002730(.001075)	002680 (.001056) .002421(.000095)	Aft Seal	$D_{cm} - cm(in)$ 1. D - cm(in)	002730 (.001075).002350(.000925) 002476 (.000975).002413(.000950) 002413 (.000950).002032(.000800) 003048 (.001200).002794(.001100)	002667 (. 001050). 002340(. 060935)		Dom - cm(in) I.D - cm(in) 000015 (.000006)000034(.000015)
NSIONS, EVAL			.002628 (.001056) .		Groove - cm(in)	.002730 (.001075) . .002540 (.001000) . .002413 (.000950) . .003048 (.001200) .	. 002686 (. 001056) .	RÎ	Groove - cm(in) . 000000 (. 000000) .
IGES IN FACE D IM E D III	Condition Bafore Build	.003049 (.001200) I .002600 (.001025) 2 .002858 (.001125) 3 .002794 (.001100) 4	. 002825 (. 001113) Average	Condition After Build	l.D -cm(in) Location	.0025670 (.001000) 1 .002540 (.001000) 2 .001728 (.000700) 3 .002667 (.001050) 4	.002380 (.000938) Average	Net Avera Wead Build	I.D - cm(in) (c7:00.145 (.00:7-3)
SLE VI, CHAN BUIL	oward Seal (new)	.00248 (.001200) .002500 (.001225) .002858 (.001125) .002794 (.001100)	.002825 (.001113)	Forward Seal	Dam - cm(in)	.002730 (.001075) .002540 (.001000) .002540 (.001000) .002540 (.001100)	.00265 (.001044)		Dan - cm(in) .00175 (.000069)
TAE		.003048 (.001200) .002600 (.001025) .002858 (.001125) .002794 (.001110)	.002826 (.001113)	-1	Groove – cm(in)	.002730 (.001075) .002413 (.000950) .002349 (.000925) .002790 (.001100)	.002570 (.001010)		Groove - cm(in) . 000260 (. 000103)

	J.	1,		•	2	0	~	0	Ŷ						0	-	0	-	2	5	0	ç		Ś	5	8	0	ŝ	8	•	60	•	~	5		0	2	•
	\$			38	3 3	33	33	8	8	3 2	58	88) 	2	8	8	8	88	8	8	2	8	6	3	=	4	4	8	\$	\$	\$	\$	\$	4	4		4	\$
ŝ			2	1 5	?	4	151	1	15				¢.	4	\$	*	1	4	5	1	1	ž	¥	12	\$	ş	527	Se	515	5	ន្ត	5	512	ŝ	53	ŝ	528	ŝ
L IV	eĽ	Ĩ			2	326	800	316	320				25	324	990	336	320	326	296	320	33)	315	ğ	425	385	Ę	\$	\$	1 52	13	465	459	55	\$	478	175	178	ş
Ē	£; 1	ł		1		438	426	164	EEV	Ę	ŝ	2	***	133	ŝ	3	433	9	420	Ę	4	84	4	5	\$		505	513	ŝ	ŝ	514	510	ŝ	511	52)	515	521	8
	1b/sec	ž		32	3	9700.	38.	8642	W	2			2	38	8	5700.	.0027	8	128	831	828	ž	8	820	0066	8	2900	0068	.0074	6200.	680	1010.	0102	888	a de	38	600	800
HYLIN	(BCM)	0	0 4 4 C	0 a	0	9.8	3.5	3	1.6				•••	5	3.5	3.4	2.1	5.0	2.4	2.4	2.0	2.2	2.7	5.5	5.2	5.0	5.1	5.3	5.8	6.2	7.0	7.9	8.0	7.1	6.7	7.0	7.J	2.3
	(Ka/a)	MM		8.8	<u>.</u>	.0022	.0021	6100	88	35			R	8	.021	00200	813		818	100.	.0012	813	8189	.0032	0030	0020	0000	100	100	803	8	0046	0046		2000		500	8042
MANAR	(VIQI)	4 TC				26.7	26.7	26.7	26.2	2 4 7	1 10	1.04		24.7	24.7	24.7	22.7	22.7	23.7	23.7	22.7	22.7	23.7	31.7	30.7	29.7	29.7	30.7	32.2	32.7	34.7	36.7	36.7	33.7	33.7	33.7	33.7	33.7
CAVI'Y I'	(W/cm ² abs)	0 41				18.4	18.4	18.1	18.4			•		17.0	17.0	17.0	15.6	15.6	16.3	16.3	15.6	15.6	16.3	21.8	21.2	20.5	20.5	21.2	22.2	22.5	23.9	25.3	25.3	23.2	23.2	23.2	23.2	23.2
	KIA)																						•	5				-										
11252-0		[-	-				_					_								_				2								_	•				_	
ATR 1	(ndn)															_							-		_													-
	(II/cm ²	ę											_										_	113.7		_					_							
q	(MN)	25 000			•		_							_						_			-	54, 100	-									_	_			
2010	PT/8PC)	18											_											8														
	M/9	101 0								_												4		182.9	-													-
	HOURS	-	-	~	, ·	•	ŝ	\$	~	æ			2:	= :	12	5	=	15	16	17		19	20	21	22	23	24	25	26	27	28	29	S	31	32	8	2	35

•

ORIGINAL PAGE IS OF POOR QUALITY

International Contrart Contrart						-	TABLE	· IIV	- Contin	ned								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	las	ATA	1112	SUNK		CAVITY 19	THE		AIRFICH			SEAL	Ê		Π
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M/R	745/142	(Hdai)	(N/Care nba	-	(FEIA)	Ĕ	/cm ² abe)	(TELA)	(׫/=)	(BCTM)	(16/00	۲ پ	٤Ĥ		SH Y	8
11.1 11.1					113	1	144	1	7	35.7	1700.	7.6	8	3	51	с е	8	505
33 33.7 0046 7.8 0001 446 333 547 5005 545 545 545 4 213.0 700 62,900 148.1 215 33.5 31.7 0016 500 0255 547 235 553 553 53.5	81	162.9	200	<u> </u>	2				23.9	7.46	0048		8	1 539	5	<u>5</u>	37	ŝ
37.1 37.1	2					_			24.	33.7	9900	2.9	010.	Brs III	22	5	\$	528
1 213 700 52, 500 148.1 213 53.5 53.7 0016 77.5 0006 547 528 544 558 1<	3	_		•					24	35.7	.00	7.8	§.	2	5	<u>द</u>	3	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5				-		-		23.9	34.7	1100.	7.5	8.	543	22	<u>\$</u>	\$	528
4.1 33 53	3 3		2	×2 000	1 871		215		35.5	51.7	.0116	20.0	8	5	2	5	4	555
4 4 5 0 <td></td> <td></td> <td>3 -</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>36.3</td> <td>52.7</td> <td>9110.</td> <td>20.0</td> <td>8.</td> <td>5</td> <td>22</td> <td>5</td> <td>62</td> <td>3</td>			3 -		-				36.3	52.7	9110.	20.0	8.	5	22	5	62	3
1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.9</td> <td>50.7</td> <td>.0116</td> <td>20.0</td> <td>8</td> <td>2 4 5</td> <td>-</td> <td>2</td> <td>5</td> <td>8</td>									34.9	50.7	.0116	20.0	8	2 4 5	-	2	5	8
46 122.0 40.7 .0133 23.0 .0253 3.58 44.7 .014 12.0 .0253 3.59 149 150	23								37.0	53.7	.0128	22.0	.020	0 555	<u>8</u>	<u>ເ</u>	2	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 4	-	-	-					38.	55.7	.0133	23.0	.029.	3 556	2	5	2	2
15 15 0104 16.0 0225 037 130 150 037 120 15 000 45,100 45,100 0255 0281 337 109 337 220 15 000 45,100 0005 12.5 0016 10.7 0016 377 220 15 000 45,100 0005 15.7 0016 20.5 0281 237 230 15 16 0005 15.7 0016 10.7 0016 237 220 15 10 26.0 45,100 10.7 0016 237 230 16 16 0005 15.7 0007 15.3 0036 377 220 183.0 40.7 0007 15.5 0007 15.4 0016 377 220 183.0 40.7 0007 15.5 0007 15.5 0018 391 245 183.0 40.7 0007 15.5 0008 15.5 0008 15.5 183.0 40.7 0007 15.5 0008 15.5 0075 1397 183.0 40.7 00007 15.5 0008 15.5 </td <td>212</td> <td>135 0</td> <td>100</td> <td>33.900</td> <td>+-</td> <td>+</td> <td></td> <td>F</td> <td>28.7</td> <td>41.7</td> <td>1.0116</td> <td>20.0</td> <td>80.</td> <td>339</td> <td>6</td> <td>8</td> <td>\$</td> <td>189</td>	212	135 0	100	33.900	+-	+		F	28.7	41.7	1.0116	20.0	80.	339	6	8	\$	189
28.0 40.7 .0104 18.0 .0229 363 175 206 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 365 377 220 366 377 220 366 274 235 377 220 366 274 235 377 220 366 274 235 377 220 366 274 235 377 220 366 274 235		-	2	-					28.0	40.7	.010.	18.0	022	9 35	2		5	8
55 35.7 .0119 20.5 .0281 377 210 377 211 55 35.7 .0075 11.0 .0055 12.5 .0195 391 224 55 35.7 .0075 12.5 .0195 391 224 391 224 55 35.7 .0075 12.5 .0195 391 224 391 224 55 35.7 .0075 12.5 .0196 391 224 391 224 55 35.7 .0075 12.0 .0166 391 224 391 224 55 35.7 .0075 12.0 .0166 391 224 391 224 55 36.7 .0066 14.5 .0196 391 224 392 224 56 26.0 56.0 .0168 391 224 397 224 57 266 .0075 12.0 .0186 391 224 58 27 .0079 15.5 .0198 391 224 58 28.0 40.7 .0075 15.0 .0198 397 224 58 28.0 40.7 .007	AB								28.0	40.7	-010-	18.0	.022	8	5	95 3	69	202
29.4 42.7 -0116 20.0 -0225 377 210 377 220 25 32.7 -0003 12.5 0003 12.5 0195 391 245 25 37.7 -0007 15.0 -0261 377 220 377 229 25 32.7 -0007 15.0 -0195 391 245 393 245 25 37.7 -0007 15.0 -0191 391 245 393 245 26 37.7 -0007 15.0 -0007 15.0 -0007 377 229 26 37.7 -0007 15.0 -0007 15.0 -0193 391 245 27 28.7 41.7 -0007 15.5 -0198 394 224 28 41.7 -0007 15.5 -0198 394 224 28 41.7 -0007 15.5 -0198 394 224 28 41.7 -0007 15.5 -0198 394 224 28 28.7 41.7 -0007 15.5 -0198 394 28 28.7 41.7 -0007 15.5 -0198<									30.1	43.7	6110.	20.5	80	371	200	<u>8</u>	2	215
32. 46.7 .0119 20.5 .0261 337 220 35.7 .0007 11.2 .0053 11.2 .0159 391 243 55 33.7 .0007 11.2 .0159 391 243 397 254 55 33.7 .0007 11.2 .0159 391 243 397 254 55 37.7 .0007 11.2 .0007 11.2 .0191 391 244 397 254 55 37.7 .0007 11.7 .0007 15.5 .0191 391 244 254 55 37.7 .0007 15.5 .0191 391 244 397 254 59 40.7 .0007 15.5 .0198 394 255 397 254 59 40.7 .0007 15.5 .0198 394 255 397 254 50 50 15.5 .0198 394 255 397 254 50 50 15.5 .0097 15.5 .0198 394 255 50 50 15.5 .0097 15.5 .0198 394 255 <td< td=""><td>; ;</td><td>-</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>29.4</td><td>42.7</td><td>9110.</td><td>20.0</td><td>520.</td><td>37</td><td>2 2 2</td><td>0</td><td>2</td><td>22</td></td<>	; ;	-	+						29.4	42.7	9110.	20.0	520.	37	2 2 2	0	2	22
24. 35.7 .0075 11.0 .0166 391 24. 55 35.7 .0073 12.5 .0195 391 24. 55 37.7 .0095 12.5 .0195 391 24. 55 37.7 .0095 15.0 .0198 391 24. 55 37.7 .0097 15.0 .0198 391 24. 55 37.7 .0097 15.0 .0198 391 24. 55 37.7 .0097 15.5 .0198 391 24. 56 28.7 41.7 .0097 15.5 .0198 397 25.5 57 .0097 15.5 .0198 397 24. 27.3 58 28.7 41.7 .0097 15.5 .0198 397 25.5 58 28.7 41.7 .0097 15.5 .0198 397 25.5 58 28.7 41.7 .0097 15.5 .0198 24.5 58 28.7 41.7 .0097 15.5 .0198 24.5 58 28.7 41.7 .0097 15.6 .0198 24.5 58 28.	25	152.0	2005	45, 100					32.	46.7	.0119	20.5	80.	37	2	2	88	33
24. 35.7 .0073 12.5 .0159 391 245 357 55 35.7 .0084 14.5 .0198 391 245 397 254 55 35.7 .0084 14.5 .0198 391 243 397 254 55 35.7 .0084 14.5 .0198 391 224 397 254 55 35.7 .0084 14.5 .0094 397 254 397 254 56 40.7 .0084 15.5 .0198 394 254 397 254 59 41.7 .0080 15.5 .0198 394 254 397 254 58 41.7 .0080 15.5 .0198 394 254 397 254 50 40.7 .0087 15.6 .0198 394 254 407 254 51 0 15.5 .0198 394 255 407 254 50 28.7 41.7 .0087 15.6 .0198 397 254 52 213.0 .0057 15.6 .0198 416 290 52 210.7 .0087	; \$	-	-	-					24.	35.7	.0075	0.61	<u>8</u>	33			2	
25. 36.7 .0004 14.5 .0101 391 231 55 37.7 .0007 15.0 .0191 391 231 59 41.7 .0000 15.5 .0191 391 231 59 41.7 .0000 15.5 .0191 391 231 59 41.7 .0000 15.5 .0191 391 231 50 50 41.7 .0000 15.5 .0191 391 231 50 50 15.5 .0191 391 231 231 50 50 15.5 .0198 392 234 232 50 50 15.5 .0198 392 234 232 50 50 15.5 .0198 392 234 232 50 50 15.5 .0198 392 234 232 51 60 15.5 .0198 392 234 232 52 231.0 15.5 .0198 392 234 50 50 15.5 .0198 392 234 52 231.0 .0007 15.5 .0198 246 52 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24.</td> <td>35.7</td> <td>.0073</td> <td>12.5</td> <td>.015</td> <td>6 36</td> <td><u> </u></td> <td></td> <td>81</td> <td>3</td>									24.	35.7	.0073	12.5	.015	6 36	<u> </u>		81	3
28.0 40.7 .0007 15.0 .0191 371 228 29.1 28.7 41.7 .0003 16.0 .0704 472 228 29.1 28.7 41.7 .0009 15.5 .0198 371 273 29.1 28.7 41.7 .0009 15.5 .0198 371 273 29.1 28.7 41.7 .0000 15.5 .0198 372 273 29.1 28.7 41.7 .0000 15.5 .0198 372 273 29.1 29.1 41.7 .0000 15.5 .0198 372 273 29.1 29.1 41.7 .0007 15.0 .0198 372 273 29.1 29.1 41.7 .0007 15.0 .0198 372 273 29.1 29.1 2017 41.7 .0007 15.0 .0198 273 29.1 29.1 2017 41.7 .0007 15.0 .0198 273 29.1 2017 41.7 .0007 15.0 .0198 273 273 29.1 2017 41.7 .0007 14.2 270 274 <	33								25.	36.7	1803.	14.5	80.	39				K i
28.7 40.7 .0073 16.0 .0024 472 229 55 100 55.5 .0076 35.5 .0076 374 379 229 56 70 52.5 .0076 15.5 .0076 374 379 226 400 274 56 70 700 52.5 .0076 15.5 .0176 374 274	5	-	•	-					2.	37.7	.0067	15.0	610.	39	<u> </u>		8	8
28.7 41.7 .0000 15.5 .0198 399 242 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 246 58.7 41.7 .0000 15.5 .0198 399 248 58.7 41.7 .0007 15.5 .0198 399 248 58.7 41.7 .0007 15.6 .0198 399 258 58.7 41.7 .0007 15.0 .0198 399 258 58.7 41.7 .0007 15.0 .0198 399 258 58.7 41.7 .0007 14.5 .0198 277 290 58.7 41.7 .0007 14.5 .0198 277 290 59.7 40.7 .0009	3	0.081	900	54, 100					28.0	40.7	.003	16.0	8	404	2		6	S
28.7 41.7 1.0000 15.5 1.0198 377 246 400 59 4 42.7 1.0000 15.5 1.0198 397 248 400 60 28.7 41.7 1.0000 15.5 1.0198 397 248 400 61 37.7 1.0000 15.5 1.0198 397 248 399 248 62 37.7 1.0000 15.5 1.0198 397 248 399 248 63 23.9 23.7 1.0001 15.5 1.0198 399 248 399 63 23.9 23.1 1.0161 446 277 399 256 64 23.0 10161 44.5 1018 446 277 65 23.0 10.0 14.5 1018 417 309 65 28.0 40.7 10067 14.5 1018 419 65 28.0 40.7 1007 14.5 1018 417 65 28.0 40.7 1009 14.5 1019 407 65 28.0 40.7 1009 14.5 1016 410 65	5	-	-						28.7	41.7	88.	15.5	610.				2 2	22
28.7 41.7 0000 15.5 .0178 Jyz Jyz <t< td=""><td>59</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>28.7</td><td>41.7</td><td>0600</td><td>2.2</td><td>410.</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td><u>.</u></td><td></td><td>38</td><td>3</td></t<>	59	_							28.7	41.7	0600	2.2	410.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>.</u>		38	3
29.4 42.7 .0000 15.5 .0178 .0188 .0188 .0188 .0188 <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>28.7</td><td>41.7</td><td>000</td><td>15.5</td><td>610.</td><td>8</td><td><u>N</u> 6</td><td><u> </u></td><td>38</td><td></td></td<>	5					_			28.7	41.7	000	15.5	610.	8	<u>N</u> 6	<u> </u>	38	
A1 37.7 41.7 37.7 41.7 37.7 41.7 37.6 41.7 37.7 41.7 37.7 41.7 37.6 41.7 37.8 41.7 37.7 41.7 37.7 41.7 37.6 41.7 <	8					~~~			29.4	42.7	8	0.0	5.0			2 2		3
62 29.4 42.7 .00/3 10.0 .0264 377 41.9 277 63 65 213.0 70067 15.0 .0191 409 277 41.9 295 65 213.0 700 62,900 40.7 .00694 14.5 .0183 41.9 295 65 213.0 700 62,900 62,900 40.7 .0079 11.5 .0183 41.9 295 65 213.0 700 62,900 62,900 62,900 40.7 .0067 14.5 2018 41.9 295 66 27.7 .0054 14.5 .0183 41.5 .0183 42.7 310 40.7 67 200 40.7 .0075 11.5 .0183 41.9 285 68 27.7 28.0 40.7 .0075 13.0 .0172 479 68 27.7 397.7 .0075 13.0 .0166 461 307 69 27.7 397.7 .0075 13.0 .0166 461 307 77 397.7 .0075 13.0 .0166 461 307 77 397.7 .0075	21								. 2	37.7	c/m·	2				2.3	3 6	ŝĘ
63 28.7 41.7 .006/ 15.0 .016/ 14.5 .016/ 14.6 270/ 14.6 64 700 62,900 62,900 420.7 .006/ 14.5 .016/ 426 308 65 213.0 700 62,900 42.7 .017 .006/ 14.5 .018 410.7 308 65 213.0 700 62,900 42.7 .007 11.5 .0172 456 308 66 27.1 300.7 40.7 .0075 11.5 .0172 459 385 67 28.0 40.7 .0075 13.0 .0166 459 366 77 39.7 .0075 13.0 .0166 459 366 77 39.7 .0075 13.0 .0166 459 386 69 39.7 .0075 13.0 .0166 461 370 77 39.7 .0075 13.0 .0166 461 370 77 39.7 .0075 13.0 .0166 461 370 77 39.7 .0075 13.0 .0166 461 370 77 39.7 .0075 13.0 .0166 461 370	62								29.4	42.7	£/00°	0.01			<u> </u>	8 6	2	205
28.0 40.7 .0084 14.5 .0185 47 23 65 213.0 700 62,900 40.7 .0079 11.5 .0192 47 235 66 213.0 700 62,900 40.7 .0079 11.5 .0172 45 700 67 28.0 40.7 .0079 11.5 .0172 45 395 68 27 39.7 .0075 13.0 .0166 461 370 68 27 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 13.0 .0166 461 370 479 69 27 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 13.0 .0166 461 370 7 39.7 .0075 .0166 461 372 477	2								28.7	1.14	•008'	0.01	A.D.	2:				28
65 213.0 700 62,900 40.7 .0094 14.5 .0183 42,7 100 40.6 66 213.0 700 62,900 40.7 .0079 11.5 .0172 454 385 67 28.0 40.7 .0075 13.0 .0166 466 377 479 404 68 27. 39.7 .0075 13.0 .0166 461 370 472 380 69 27. 39.7 .0075 13.0 .0166 461 370 472 380 69 27. 39.7 .0075 13.0 .0166 461 370 472 380 69 40.7 .0075 13.0 .0166 461 370 472 380 69 40.7 .0075 13.0 .0166 461 370 429 77 30.7 .0077 .0075 13.0 .0166 461 370 429 77 30.7 .0075 .0166 461 370 429	3					_			2 6. 0	40.7	200	2.4	80,		<u>.</u>	2 9	2	5
66 213.0 700 62, 900 28.0 40.7 .0079 11.5 .0172 4.55	54		-				~		30.	43.7	800	5.5	810.		2.	2 5	2 2	
67 28.0 40.7 .0075 13.0 .0066 472 390 68 27 39.7 .0075 13.0 .0166 461 370 472 390 68 30.7 .0075 13.0 .0166 461 370 429 666 459 3666 456 380 429 429 429 429 429 429 429 429 429 429 429 429 429 429 429	8	213.0	82	62, 900	~~				28.0	40.7	.0079	<u></u>	10.		23	2 X R	101	
68 27. 39.7 .00.5 13.0 .0166 461 370 489 69 27. 39.7 .007.5 13.0 .0166 461 370 479 489	67		-	_					28.0	2.04 1.04	5/00-				ž.č og	<u> </u>	2	38
	68								27.		2,2,2					20	3	80
	69													24 		2 2	63	\$

		FL	4	84	175	<u>8</u>	520	545	5	4 62	द्भ	295	Ś	3	45	22	3	225	555	250	202	ŝ	र र	520	3	515	550	83	350	550	8	505	516	2	2	ž	\$
	Ŷ	2i ×	ş	494	519	533	£	558	\$93	512	555	567	559	3	ŝ	545	556	55	3	Ŧ	537	220	555	3	555	273	8	550	8	3	522	ŝ	3	200	555	558	559
	54 JY	e E	405	380	47	450	474	495	30	3	498	515	505	505	424	472	505	515	515	484	475	498	505	8	512	8	203	518	512	510	4 58	482	\$		12	233	524
	10	۲ ۲	480	472	ŝ	511	518	530	539	511	532	242	536	536	491	517	ŝ	272	273	524	519	532	53%	527	3	522	534	3	540	539	510	523	528	3	3	522	547
		(1b/sec	CS10.	.0178	.0159	.0159	.0178	.0178	8/10.	.0178	.0172	.0178	1610.	1610.	.0178	-0185	1610.	.0249	.0249	.0242	.0223	.0217	.0229	.0229	.0229	.0229	.0229	88. 9	.0255	-0255	.0242	.0249	.0249	.0249	333	.0255	.0255
	HOLIN	(MCB)	12.0	14.0	12.5	12.5	14.0	14.0	14.0	14.0	13.5	14.0	15.0	15.0	14.0	14.5	15.0	19.5	19.5	19.0	17.5	17.0	18.0	18.0	18.0	18.0	18.0	18.5	20.0	20.0	19.0	19.5	19.5	19.5	20.0	20.0	20.0
		(Kg/a)	.0700	1800.	.0073	.0073	1900	800	8	88	.0078	1800.	.0087	.006/	80.	.0064	.0087	.0113	6110.	.0110	.0102	6600.	0101	.0104	.010.	010	00	-010.	.0116	.0116	010.	C110.	.0113		.0116	.0116	9110.
nued	PERCENTER	(15LA)	38.7	43.7	42.7	42.7	43.7	43.7	43.7	42.7	42.7	2.64	45.7	46.7	39.7	39.7	39.7	46.7	45.7	45.7	44.7	44.7	4.7	46.7	4.7	46.7	46.7	47.7	48.7	48.7	48.7	49.7	48.7	48.7	49.7	49.7	49.7
'II - Conti	CAVITY II	(N/cm2 nbs)	26.7	30.1	27.4	29.4	39.1	30.1	30.1	29.4	29.4	30.1	31.5	32.2	27.4	27.4	27.4	32.2	31.5	31.5	30.8	30.8	30.8	32.2	30.8	32.2	32.2	32.9	33. 6	33.6	33.6	34.2	33.6	33.6	34.2	34.2	34.2
Ъ Ч																											_										
TABI	E.	(VIS)	5	_																																	
•	PERCIN	с —	5																		_																
	ATH 1	(II/cm; UDB)	148.14					-			_					<u>,</u>																				- ,	-
	ED 1	(Hah)	62, 700													·							-	63, 800)	64,700	65,600	66, 500	67,400		•	63, 800	56, 500	56, 500	57,400	68, 300	68, 300	68, 300
	.HS	(245/14)	2007	_																			-	707	717	221	737	147	_	_	707	737	762	747	757	757	157
	and some of the second s	s/x	213.0	_																			-	215.5	218.7	221.8	224.0	227.7			215.5	224.6	224.6	227.7	230.7	230.7	230.7
	-	RUN	12	22	23	74	25	26	11	78	5	8	8	82	8	8	85	\$	87	88	68	8	16	Ë	g	54	95	8	6	96	98.2	8.5	7.86	8	99.2	8 	8

	Τ	.8	28
	-	\$ _	33
	12		និនិ
	38	Σ]. ×	8 3
		(16/860	.0255
	NINTAN	(BCPK)	20.0 20.0
		(Ka/a)	0116. 0110.
n e d	ายายกะ	(FEIA)	50.7 49.7
I - Contin	CAVITY P	(N/cm ² Abe)	34.9 34.2
I >			
TABLE	ESIALE	(MI34)	215 215
	ATI 170	(N/cm ² abe)	148.1 148.1
	ZD	(H4N)	70, 100 72, 500
	RIT.	(11 /8 2 C)	777 B00
		×8	243.8
		RUN	100.2

Figure 37. Forward and Aft Seal Seats After Endurance Test, Build I.

TAE	LE VIII, CHA BUI	NGES IN FACE DI LD I	MENSIONS, END	URANCE TES	П,
-1	"orward Seal (new)	Condition Before Build	j (new)	Aft Seal	
Groove - an (in)	Dam - cm(in)	l.D cm(in) Locatio	n Groove - cm(in)	Dan - cm(in)	l.D - cm(in)
.00273 (.001075) .00286 (.001125) .00324 (.001275)	.00273 (.001075) .00286 (.001125) .00324 (.001275)	.00273 (.001075) 1 .00286 (.001125) 2 .00324 (.001275) 3	.00298 (.001175) .00349 (.001375) .00286 (.001125)	.00298 (.001175) .00349 (.001375) .00286 (.001125)	.00298(.001175) .00349(.001375) .00286(.001125)
.00349 (.001375)	.00349 (.001375)	.00349 (.001375) 4	.00305 (.00120)	.00305 (.00120)	.00305(.00120)
.00308 (.001213)	.00308 (.001213)	.00308 (.001213) Average	.00309 (.001219)	.00309 (.001219)	,00309(.001219)
-1	forward Seal	Conditio After Build 1 (6	n rg. Failure)	Aft Seal	<u></u>
Groove - cm(in)	Dam - cm(in)	I.D -cm(in) Location	n Groove - cm(in)	Dam - cm(in)	1.D - cm(in)
.00254 (.00100) .00279 (.00110) .00305 (.00120) .00254 (.00100)	.00248 (.000975) .00210 (.000825) .00260 (.001025) .00273 (.001075)	.00178 (.00070) 1 .00203 (.00080) 2 .00267 (.00105) 3 .00267 (.00105 4	.00248 (.000975) .00267 (.00105) .00210 (.000825) .00248 (.000975)	.00260 (.001025) .00254 (.00100) .00184 (.000725) .001222 (.000875)	.00222(.000875) .00286(.001125) .00203(.00080) .00222(.000875)
.00273 (.001075)	.00248 (.000975)	.00229 (.0009) Average	, .00243 (.00096)	. 00230 (. 000906)	.00233(.000919)
		Net Ave Wear (Buil	rage [d 1]		
Groove - cm(in)	Dam - cm(in)	1.D - cm(in)	Groove - cm(in)	Dam - cm(In)	1.D - cm(in)
.00035 (.000138)	.000605 (.000238)	.000795 (.000313)	.000658 (.000259)	.000795 (.000313)	. 0007 62(. 0003)

.

rings were free of coke and with the exception of the springs, coke did not yet appear to be seriously affecting seal operation. The seal housings were not cleaned, but coil springs were changed as required.

Endurance Test, Build II (55 Hours)

The test rig was rebuilt, and the endurance test was completed without problem. At the end of the endurance test, seal operation at 243 m/s (800 ft/sec) was accomplished. The condition of the seals at the completion of the endurance test is documented in Figures 39 through 52. Inspection revealed coking of the internal seal components had continued, and sufficient deposits had formed on the housing and piston ring carrier to prevent the seals from returning to their normal free height. Coke within the coil springs limited their action as did coke in the spring cavity (Figures 48 and 49). The effected forward seal components were less coked than the corresponding aft seal components. The piston rings of both seals were free from coke. (Figure 51)

The seal seats exhibited radial cracks in the chrome carbide surface coating originating at the seat ID. The seats were otherwise in good condition as exhibited in Figures 44 and 45.

The bellows clamping spacers acted as centrifugal separators for small particulate matter in the seat cooling oil. The deposits can be seen in Figure 47.

Seal Air Leakage

Air leakage was plotted as a function of endurance hours and is presented in Figure 52. Changes in operating parameters are indicated on the plot. What appears to be a disproportionate increase in air leakage is seen prior to the bearing problem during Build I. A 60 percent reduction in air leakage is seen at equivalent conditions after the rebuild (Build II).

Seal Wear

Changes in face dimensions for the first 45 hours (Build I) are presented in Table VIII. Changes in face dimensions for the last 55 hours of operation (Build II) are presented in Table IX.

The wear results are compared below:

Forward Seal	Euild I (45 Hours)	Build II (55 Hours)
Sealing dam	.000605 cm (.000238 in.)	.001379 cm (.000543 in.)
Land adjacent groove	.000350 cm (.000138 in.)	None measurable
Surface near ID	.000795 cm (.000313 in.)	.001093 cm (.000430 in.)
Face average	.000583 cm (.000230 in.)	.000824 cm (.000324 in.)
Average wear rate	.000013 cm/hr (.000005 in./hr)	.000015 cm/hr (.000006 in./hr)

	I.D - cm(in)	<pre>5) .00286(.001125) 3) .00305(.001200) .00305(.001200) .00241(.00095) .00229(.00090)</pre>	I) .00265(.001044)		l.D - cm(in)	.00248(.000975) .00273(.001075)	.00178(.00070)	.00216(.00085)		l.D ~ cm(in)	.000497(.000196)
Aft Seal	Dam - cm(in)	.00286 (.00112 .00305 (.001200 .00241 (.00095) .00229 (.00090)	.00265 (.001044	Aft Seal	Dam - cm(in)	.00241 (.00095) .00305 (.00120)	.00241 (.00095) .00229 (.00090)	.00254 (.0010)		Dan - cm(in)	.00011 (.000044]
-	Groove - cm(in)	.00286 (.001125) .00305 (.00120) .00241 (.00095) .00229 (.00090)	.00265 (.001044)	(55 hr)	Groove - cm(in)	.00305 (.001125) .00305 (.00120)	.00241 (.00095) .00229 (.00090)	.00265 (.00104)		Groove - cm(in)	.000009 (.000004)
Condition Before Build	1.D cm(in) Location	.00254 (.00100) 1 .00273 (.001075) 2 .00305 (.001200) 3 .00381 (.001500) 4	.00303(.001194)Averoge	Condition After Build II	I.D -cm(in) Location	. 00152 (. 00060) 1 . 00178 (. 00070) 2	. 90210 (. 000825) 3 . 00325 (. 000925) 4	.001936(.000763)Average	Net Average Wear (Build I)	l.D - cm(in)	.001095 (.000430)
Forward Seal (new)	Dam - cm(in)	.00254 (.00100) .00273 (.001075) .00305 (.001200) .00381 (.001500)	.00303 (.001194)	Forward Seal	Dam - cm(in)	.00102 (.000425) .00108 (.000425)	.00273 (.001075	.001451(.00065)		Dam - cm(in)	.001379 (.000543)
	Grouve - cm (in)	.002554 (.00100) .00273 (.001075) .00305 (.001200) .00381 (.001500)	.00303 (.001194)		Groove - cm(in)	.00254 (.00100) .00273 (.001075) 00305 / 001305	00381 (.00150)	.003032 (.001194)		Groc e - cm(jn)	. 000000 (. 000000)

TABLE IX. CHANGES IN FACE DIMENSIONS, ENDURANCE TEST, BUILD II

VIGINAL PAGE IS

74

Forward Seal	Build I (45 Hours)	Build II (55 Hours)
Mininum remaining groove depth	.002540 cm (.001000 🛓	: 002540 cm (.001000 in.)
Aft Seal	Build I (45 Hours)	Build II (55 Hours)
Sealing dam	.000795 cm (.000313 in.)) $.00 \le 1$ cm (.000044 in.)
Land adjacent groove	.000658 cm (.000295 in.)) .000009 cm (.000040 in.)
Surface near ID	.000762 cm (.000300 in.)) .000497 cm (.000196 in.)
Face average	.000768 cm (.000303 in.)	.000207 cm (.000081 in.)
Average wear rate	.000017 cm / (.000007 in. hr) hr)	/ .000004 cm/(.000001 in. / hr)

Minimum remaining.002096 cm (.000825 in.).002286 cm (.000900 in.) groove depth

Seal life was calculated using spiral groove wear data from Build I! of the endurance test. Build I data were discounted because of the bearing failure which interrupted testing. Wear of the other seal features (i.e. sealing dam and seal face near I...) was not considered in the wear rate calculation Wear of these features may affect seal leakage rates but should not affect seal life.

Forward seal wear rate - non-measurable

Aft seal wear rate - 1.8 x 10
$$\frac{\text{cm}}{\text{hr}}$$
 (7.3 x 10 $\frac{8 \text{ in.}}{\text{hr}}$)

The above wear rate for the aft seal infers a potential life between 2700 hours (min. initial groove depth) and 9500 % urs (maximum initial groove depth). This assumes a minimum rema ning groove depth of 0.00076 cm (.000030 in.) which is sufficient to sustain seal operation. Wear rates experienced during the experimental evaluation phase were somewhat higher, as were wear rates observed during previous programs (Reference 1). A concise explanation of the variations in wear rates is not available and suggests additional investigation of parameters influencing wear would be valuable. Wear characteristics may be stabilized with a seal redesign placing the spiral grooves in the hard surface of the seal seat.

CONCLUSION AND RECOMMENDATIONS

- The spiral-groove self-acting seal was tested and found capable of operation at surface speeds to 243 m/s (800 ft/sec), sealed pressures of 199.9 N/cm² abs (290 psia), and air temperatures of 645.4 K (702°F) (nonconcurrent conditions). The maximum speed condition of 243 m/s (800 ft/sec) is a rotative speed of 72, 500 rpm.
- Seal life calculated from Build II endurance test wear data indicates a minimum potential life of 2700 hours. Variations in wear rates in this and previous programs (Ref. I) indicate additional investigation of parameters influencing wear would be valuable. A redesign that transfers the spiral grooves into the hard seal seal from the carbon element may contribute to increased life.
- Seal air leakage measured during the test program is considered to be within a range usable in small gas turbine engines.
- Oil coke deposits on internal seal components were significant by the end of the endurance test. Future seal designs should incorporate cooling or insulating mechanism to reduce oil coke deposits.
- Distortion of the carbon sealing face was found to occur during testing. It is believed that the TZM retaining band may be influencing sealing face flatness. Eliminating composite construction of the sealing elements would minimize this possibility.
- The spiral groove film riding face seal has exhibited the capability to operate at advanced gas turbine engine conditions. Additional development effort is required in the areas of distortion control, wear mechanisms, and control of oil degradation (coxing).

REFERENCES

- 1. O'Brien, M., DEVELOPMENT OF A SHORT-LENGTH SELF-ACTING SEAL, Avco Lycoming Report LYC 76-71, NASA CR-135159, 1976.
- 2. Lynwander, P., DEVELOPMENT OF SELF-ACTING SEALS FOR HELICOPTER FNGINES, Avco Lycoming Report LYC 74-55, NASA CR-134739, 1974.
- 3. Lynwander, P., SELF-ACTING SEALS FOR HELICOPTER ENGINES, Avco Lycoming Report LYC 75-78, NASA CR-134940, 1975.

APPENDIX

This appendix is divided into the following sections, presenting the actual proficerder traces of the carbon faces and seal seats:

- Section 1. Explanation of Proficorder Trace
- Section 2. Evaluation Test Carbon face traces from Build I through Build III Seal seat traces from Build I through Build III
- Section 3. Endurance Test Carbon face traces from Build I and Build II Seal seat traces from Build I and Build II

.

SECTION 1

Seal Face Traces

Seal face traces were taken at four equally spaced locations proceeding from the O.D. towards the I.D.

TYPICAL TRACE

Seal Seat traces illustrate both waviness and surface finish. Initial and final traces are presented except or the case where hardware was damaged during the malfunction of the test rig bearing.

Traces are presented in series illustrating relative changes from build to build.

SECTION 2

┶

Aft Seal After Build I

Aft Seal After Build I

ORIGINAL PAGE 18

Evaluation Test Location 3 Aft Seal New

U 90

Aft Seal Seat Finish Before Evaluation Testing

: 7

Evaluation Test Location 4 Fwd Seal Prior to Build II

ORIGINAL PAGE

95

Ţ

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE R OF POOR QUALITY

DRIGINAL PAGE IS DP POOR QUALITY

•

ï

ORIGINAL PAGE IS OF FOOR QUALITY

H

T

ORIGINAL PAGE IS OF POOR QUALITY

Evaluation Test Location 3 Aft Seal Prior to Build III

SECTION 3

Prior to Endurance Test Location l Fwd Seal

Fwd Seal After Endurance Test (Build I)

Prior to Endurance Test Location 3 Fwd Seal

> ORIGINAL PAGE IS OF POOR QUALITY

OLICINAL 7 VER IS OF POOR QUALITY

•

,

i

Ŧ

.

Prior to Endurance Test Location 4 Aft Seal

ORIGINAL PAGE IS OF POOR QUALITY

4----٦ 1 . <u>L</u>.k. Fwd Seal After Endurance Testing (Build II) Ć i, . ۲ ۲ pè. در ج Ą Stots Endurance Test Location 2 Fwd Seal Prior to Build II 21.4 in the second in citate to + DA ¢

ORIGINAL PAGE IS OF POOR QUALITY

Endurance Test Location 4 Fwd Seal Prior to Build II

125

•

1

٢.

Fwd Seal Seat Finish Prior to Endurance Test (Build II)

ORIGINAL PAGE IS OF POOR QUALITY

Decket No. 2

t ;

No U Jan

-

1

T. Y

-G

Erdurance Test Location 3 Aft Seal Prior to Build II

RIGINAL PAGE IS

Aft Seal Seat Finish Prior to Endurance Test (Build II)

