114 research outputs found

    Regulating the employment dynamics of domestic supply chains

    Get PDF
    This paper sheds light on the role that the regulation of primarily domestic, rather than global, supply chains could play in protecting and enhancing standards of workplace health and safety, as well as employment standards more generally. The analysis presented confirms the potential relevance of such regulation in these regards. However, it also reinforces existing evidence pointing to the fact that only very rarely will market-related considerations on their own prompt purchasers to seek to directly influence the employment practices of their suppliers. The paper ends therefore by highlighting a number of key issues relating to the design of regulatory initiatives aimed at protecting and enhancing employment conditions within supply chains

    Compiling SHIM

    Get PDF
    Embedded systems demand concurrency for supporting simultaneous actions in their environment and parallel hardware. Although most concurrent programming formalisms are prone to races and non-determinism, some, such as our SHIM (software/hardware integration medium) language, avoid them by design. In particular, the behavior of SHIM programs is scheduling-independent, meaning the I/O behavior of a program is independent of scheduling policies, including the relative execution rates of concurrent processes. The SHIM project demonstrates how a scheduling-independent language simplifies the design, optimization, and verification of concurrent systems. Through examples and discussion, we describe the SHIM language and code generation techniques for both shared-memory and message-passing architectures, along with some verification algorithms

    Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria

    Full text link
    An optimum design of low-cost housing offers low-income urban inhabitants great opportunities to obtain a shelter at an affordable price and acceptable indoor thermal conditions. In this paper, the design and operation of a low-cost dwelling were numerically optimized using a simulation-based approach. Three multi-objective cost functions including construction cost, thermal comfort performance and 50-year operating cost were applied for naturally ventilated and air-conditioned buildings. Thermal environment inside the house was controlled and assessed by two thermal comfort models. Optimization problems which consist of 18 design parameters and 6 ventilation strategies were examined by two population-based probabilistic optimization algorithms (particle swarm optimization and hybrid algorithm). Optimum designs corresponding to each objective function, differences in optimal solutions, energy saving by the adaptive comfort approach and optimization effectiveness were outlined. The optimization method used in this paper shows a considerable potential of comfort improvement, energy saving and operating cost reduction
    • …
    corecore