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Abstract. Embedded systems demand concurrency for supporting si-
multaneous actions in their environment and parallel hardware. Although
most concurrent programming formalisms are prone to races and non-
determinism, some, such as our shim (software/hardware integration
medium) language, avoid them by design. In particular, the behavior
of shim programs is scheduling-independent, meaning the I/O behavior
of a program is independent of scheduling policies, including the relative
execution rates of concurrent processes.
The shim project demonstrates how a scheduling-independent language
simplifies the design, optimization, and verification of concurrent sys-
tems. Through examples and discussion, we describe the shim language
and code generation techniques for both shared-memory and message-
passing architectures, along with some verification algorithms.

1 Introduction

Embedded systems differ from traditional computing systems in their need for
concurrent descriptions to handle simultaneous activities in their environment or
to exploit parallel hardware. While it would be nice to program such systems in
purely sequential languages, this greatly hinders both expressing and exploiting
parallelism. Instead, we propose a fundamentally concurrent language that, by
construction, avoids many of the usual pitfalls of parallel programming, specifi-
cally data races and non-determinism.

Most sequential programming languages (e.g., C) are deterministic: they pro-
duce the same output for the same input. Inputs include usual things such as
files and command-line arguments, but for reproducibility and portability, things
such as the processor architecture, the compiler, and even the operating system
are not considered inputs. This helps programmers by making it simpler to rea-
son about a program and it also simplifies verification because if a program
produces the desired result for an input during testing, it will do so reliably.

By contrast, concurrent software languages based on the traditional shared
memory, locks, and condition variables model (e.g., pthreads or Java) are not
deterministic by this definition because the output of a program may depend on
such things as the operating system’s scheduling policy, the relative execution
rates of parallel processors, and other things outside the application program-
mer’s control. Not only does this demand a programmer consider the effects of
these things when designing the program, it also means testing can only say a
program may behave correctly on certain inputs, not that it will.
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That deterministic concurrent languages are desirable and practical is the
central hypothesis of the shim project. That they relieve the programmer from
considering different execution orders is clear; whether they impose too many
constraints is not something we attempt to answer here.

In this chapter, we demonstrate that determinism also benefits code syn-
thesis, optimization, and verification by making it easier for an automated tool
to understand a program’s behavior. The advantage is particularly helpful for
formal verification algorithms, which can ignore different execution interleavings
of shim programs. Although statements in concurrently running shim processes
may execute in different orders, shim’s determinism guarantees this will not
affect any result and hence most properties. This is in great contrast to the mo-
tivation for the spin model checker [1], one of whose main purposes is to check
different execution interleavings for consistency. shim has no need for spin.

Shim is an asynchronous concurrent language whose programs consist of inde-
pendently running threads coded in an imperative C-like style that communicate
exclusively through rendezvous channels. It is a restriction of Kahn networks [2]
that replaces Kahn’s unbounded buffers with the rendezvous of Hoare’s csp [3].
Kahn’s unbounded buffers would make the language Turing-complete [7], and
are difficult to schedule [8], so the restriction to rendezvous makes the language
easy to analyze. Furthermore, since shim is a strict subset of Kahn networks,
it inherits Kahn’s scheduling independence: the sequence of data values passed
across each communication channel is guaranteed to be the same for all correct
executions of the program (and potentially input-dependent).

We started the shim (Software/Hardware Integration Medium) project after
observing students having difficulty making systems that communicated across
the hardware/software boundary [4]. Our first attempt [5] focused exclusively on
this by providing variables that could be accessed by either hardware processes
or software functions (both written in C dialect).

We found the inherent nondeterminism of this approach a key drawback. The
speed at which software runs on processors is rarely known, let alone controlled,
and since software and hardware run in parallel and communicate using shared
variables, the resulting system was nondeterministic, making it difficult to test.

Table 1. The SHIM Wish List

Trait Motivation

Concurrent Hardware/software systems fundamentally parallel

Mixes synchronous and
asynchronous styles

Software slower and less predictable than hardware;
need something like multirate dataflow

Only requires bounded resources Fundamental restriction on hardware

Formal semantics No arguments about meaning or behavior

Scheduling-independent I/O should not depend on program implementation



process sink(uint32 D) {
int v;
for (;;) v = D; /∗ Read from D ∗/

}

process receiver(uint32 C, uint32 &D) {
int a, b, r , v;
a = b = 0;
for (;;) {

r = 1;
while (r) {

r = C; /∗ Read from C ∗/
if (r != 0) {

v = C; /∗ Read from C ∗/
a = a + v;

}
}
b = b + 1;
D = b; /∗ Write to D ∗/

}
}

process sender(uint32 &C) {
int d, e;
d = 0;
while (d < 4) {

e = d;
while (e > 0) {

C = 1; /∗ Write to C ∗/
C = e; /∗ Write to C ∗/
e = e − 1;

}
C = 0; /∗ Write to C ∗/
d = d + 1;

}
}

network main() {
sender();
receiver ();
sink ();

}

Fig. 1. The dialect of shim on which the tail-recursive (Section 3) and static (Sec-
tion 4) code generators worked. A process contains imperative code; its parameters are
channels. A network runs processes or other networks in parallel.

After our first attempt, we started again from the wish list of Table 1. Our
goal was to design a concurrent, deterministic (i.e., scheduling-independent)
model of computation and started looking around. The synchronous model [6]
embodied in languages like Lustre or Esterel assumes a single or harmonically
related clocks and thus would not work well for software. The Signal language is
based on a richer model whose clocks’ rates can be controlled by data, but many
find its syntax and semantics confusing. Furthermore, Signal does not guarantee
determinism; establishing it requires sometimes-costly program-specific analysis.

In the rest of this chapter, we describe a series of code-generation techniques
suitable for both sequential and parallel processors. Each actually works on a
slightly different dialect of the shim language, although all use the Kahn-with-
rendezvous communication scheme. The reason for this diversity is historical; we
added features to the shim model as we discovered the need for them.

2 Shim with Processes and Networks

Programs in our first Kahn-with-rendezvous dialect of shim consisted of se-
quential processes and hierarchical network blocks (Figure 1). This dichotomy
(which we later removed—see Section 5) came from mimicking a similar division
in hardware description languages like Verilog.

The body of a network block consisted of instantiations (written in a function-
call style) of processes or other networks (recursion was not permitted), which



all ran in parallel. For succinctness, the compiler inferred the names of commu-
nication channels from process and network arguments, although this could be
overridden.

Processes consisted of C-like code without pointers. Process arguments were
input or output channels. Following C++ syntax, outputs were marked with
ampersands (&), suggesting they were passed by reference. References to argu-
ments would be treated as blocking write operations if they appeared on the left
of an assignment statement and blocking reads otherwise.

The overall structure, then, of a shim program in this dialect was a collection
of sequential processes running in parallel and communicating through point-to-
point channels. The compiler rejected programs in which a channel was an output
on more than one process.

3 Tail-Recursive Code Generation

Our first code-generation technique produces single-threaded C code for a uni-
processor [9]. The central challenge is efficiently simulating concurrency without
(costly, non-portable) operating system support (we present a parallel code gen-
erator in Section 6). Our technique uses an extremely simple scheduler—a stack
of function pointers—that invokes fragments of concurrently-running processes
using tail-recursion.

In tail-recursive code generation, we translate the code for each process into
a collection of C functions. In this dialect of shim, every program amounted to
a group of processes running in parallel (Section 2). The boundaries of these
functions are places where the process may communicate and have to block, so
each such process function begins with code just after a read or a write and
terminates at a read, a write, or when the process itself terminates.

At any time, a process may be running, runnable, blocked on a channel, or
terminated. These states are distinguished by the contents of the stack, channel
meta-data structs, and the program counter of the process. When a process is
runnable, a pointer to one of its functions is on the stack and its blocked field
(defined in its local variable struct) is 0. A running process has control of the
processor and there is no pointer to any of its functions on the stack. When a
process is blocked, its blocked field is 1 and the reader or writer function pointer
of at least one channel has a function pointer to one of the process’s functions.
When a process has terminated, no pointers to it appear on the stack and its
blocked field is 0.

Normal shim processes may only block on a single channel at once, so it
would seem wasteful to keep a function pointer per channel to remember where a
process is to resume. In Section 4, we relax the block-on-single-channel restriction
to accommodate code that mimics groups of concurrently-running processes.

Processes communicate through channels that consist of two things: a struct
channel that contains function pointers to the reading or writing process that is
blocked on the channel, and a buffer that can hold a single object being passed



through the channel. A non-null function pointer points to the process function
that should be invoked when the process becomes runnable again.

Figure 2 shows the implementation of a system consisting of a source process
that writes 42 to channel C and a sink process that reads it. The synthesized C
code consists of data structures that maintain a set of functions whose execu-
tion is pending, a buffer and state for each communication channel, structs that
hold the local variables of each process, a collection of functions that hold the
code of the processes broken into pieces, a placeholder function called termina-
tion_process that is called when the system terminates or deadlocks, and finally
a main function that initializes the stack of pending function pointers and starts
the system.

Processes are scheduled by pushing the address of a function on the stack
and performing a tail-recursive call to a function popped off the top of the stack.
The C code for this is as follows.

void func1() {
...
∗(sp++) = func2; /∗ schedule func2() ∗/
...
(∗(−−sp))(); return; /∗ run a pending function ∗/

}

void func2() { ... }

Under this scheme, each process is responsible for running the next; there is
no central scheduler code.

Because this code generator compiles a shim dialect that uses only point-
to-point channels for blocking rendezvous-style communication (see Section 2),
the first process that attempts to read or write on a channel blocks until the
process at the other end of the channel attempts the complementary operation.
Communication is the only cause of blocking behavior in shim systems (i.e.,
the scheduler is non-preemptive), so processes control their peers’ execution at
communication events.

The sequence of actions at read and write events in the process is fairly
complicated but still fairly efficient. Broadly, when a process attempts to read
or write, it attempts to unblock its peer, if its peer is waiting, otherwise it blocks
on the channel. Annotations in Figure 2 illustrate the behavior of the code. There
are two possibilities: when the source runs first ( 1 ), it immediately writes the
value to be communicated into the buffer for the channel (C_Value because
the code maintains the invariant that a reader only unblocks a writer after it
has read data from the channel buffer) and checks to see if the reader (the sink
process) is already blocked on the channel.

Since we assumed the source runs first, the sink is not blocked so the source
blocks on the channel. Next, the source records that control should continue at
the source_1 function (the purpose of setting C.writer) when the sink resumes
it. Finally, it pops and calls the next waiting process function from the stack.

Later, ( 2 ) the sink checks if the source is blocked on C. In this source-
before-sink scenario, the source is blocked so sink_0 immediately jumps to



void (∗stack [3])(void); /∗ runnable process stack ∗/
void (∗∗sp)(void); /∗ stack pointer ∗/

struct channel {
void (∗reader)(void); /∗ process blocked reading, if any ∗/
void (∗writer)(void); /∗ process blocked writing, if any ∗/

};

struct channel C = { 0, 0 };
int C_value;

struct { /∗ local state of source process ∗/
char blocked; /∗ 1 = blocked on a channel ∗/
int tmp1;

} source = { 0 };

struct { /∗ local state of sink process ∗/
char blocked; /∗ 1 = blocked on a channel ∗/
int v;
int tmp2;

} sink = { 0 };

process source(int32 &C) {
C = 42; /∗ send on C ∗/

}

void source_0() {
1 2

source.tmp1 = 42;
C_value = source.tmp1; /∗ write to channel buffer ∗/
if (sink.blocked && C.reader) { /∗ if reader blocked ∗/

sink.blocked = 0; /∗ mark reader unblocked ∗/
∗(sp++) = C.reader; /∗ schedule the reader ∗/
C.reader = 0; /∗ clear the channel ∗/

}
source.blocked = 1; /∗ block us, the writer ∗/
C.writer = source_1; /∗ to continue at source_1 ∗/
(∗(−−sp))(); return; /∗ run next process ∗/

}

void source_1() {
3 4

(∗(−−sp))(); return;
}

process sink(int32 C) {
int v = C; /∗ receive ∗/

}

void sink_0() {
2 1

if (source.blocked && C.writer) { /∗ if writer blocked ∗/
sink_1(); return; /∗ go directly to sink_1 ∗/

}
sink.blocked = 1; /∗ block us, the reader ∗/
C.reader = sink_1; /∗ to continue at sink_1 ∗/
(∗(−−sp))(); return; /∗ run next process ∗/

}

void sink_1() {
3

sink.tmp2 = C_value; /∗ read from channel buffer ∗/
source.blocked = 0; /∗ unblock the writer ∗/
∗(sp++) = C.writer; /∗ schedule the writer ∗/
C.writer = 0; /∗ clear the channel ∗/
sink.v = sink.tmp2;
(∗(−−sp))(); return; /∗ run next process ∗/

}

void termination_process() {}

int main() {
sp = &stack[0];
∗(sp++) = termination_process;
∗(sp++) = source_0;
∗(sp++) = sink_0;
(∗(−−sp))();
return 0;

}

Fig. 2. Synthesized code for two processes (in the boxes) that communicate and the
main() function that schedules them.



sink_1, which fetches the data from the channel buffer, unblocks and sched-
ules the writer, and clears the channel before calling the next process function,
source_1 ( 3 ).

When the sink runs first ( 1 ), it finds the source is not blocked and then
blocks. Later, the source runs ( 2 ), writes into the buffer, discovers the wait-
ing sink process, and unblocks and schedules sink before blocking itself. Later,
sink_1 runs ( 3 ), which reads data from the channel buffer, unblocks and sched-
ules the writer, which eventually sends control back to source_1 ( 4 ).

The main challenge in generating the code described above is identifying
the process function boundaries. We use a variant of extended basic blocks (see
Figure 3(c)): a new function starts at the beginning of the process, at a read
or write operation, and at any statement with more than one predecessor. This
divides the process into single-entry, multiple-exit subtrees, which is finer than
it needs to be, but is sufficient and fast. The algorithm is simple: after building
the control-flow graph of a process, a dfs is performed starting from each read,
write, or multiple-fanin node that goes until it hits such a node. The spanning
tree built by each dfs becomes the control-flow graph for the process function,
and code is generated mechanically from there.

Figure 3 illustrates the code generation process for a simple process with
some interesting control-flow. The process (Figure 3(a)) consists of two nested
loops. We translate the shim code into a fairly standard linear ir (Figure 3(b)).
Its main novelty is await, a statement that represents blocking on one or more
channels. E.g., await write C goto 6 indicates the process wants to communicate
with its environment on channel C and will branch to statement 6 once this
has occurred. Note that the instruction itself only controls synchronization; the
actual data transfer takes place in an earlier assignment statement. Although this
example (and in fact all shim processes) only ever blocks on a single channel at
a time, our static scheduling procedure (Section 4) uses the ability to block on
multiple channels simultaneously.

Our generated C code uses the following macros:

#define BLOCKED_READING(r, ch) r.blocked && ch.reader
#define RUN_READER(r, ch) \

r . blocked = 0, ∗(sp++) = ch.reader, ch.reader = 0
#define BLOCK_WRITING(w, ch, succ) w.blocked = 1, ch.writer = succ
#define BLOCKED_WRITING(w, ch) w.blocked && ch.writer
#define RUN_WRITER(w, ch) \

w.blocked = 0, ∗(sp++) = ch.writer, ch.writer = 0
#define BLOCK_READING(r, ch, succ) r.blocked = 1, ch.reader = succ
#define RUN_NEXT (∗(−−sp))(); return

Blocked_reading is true if the given process is blocked on the given chan-
nel. Run_Reader marks the given process that is blocked on the given channel
as runnable. Block_Writing marks the given process—the currently running
one—as blocked writing on the given channel. The succ parameter specifies the
process function to be executed when the process next becomes runnable. Fi-
nally, run_next runs the next runnable process.



process source(int32 &C) {
bool b = 0;
for (int32 a = 0 ; a < 100 ; ) {

if (b) {
C = a;

} else {
for (int32 d = 0 ; d < 10 ; ++d)

a = a + 1;
}
b = ~b;

}
}

(a)
0 b = 0
1 a = 0
2 ifnot a < 100 goto 14
3 ifnot b goto 7
4 C = a
5 await write C goto 6
6 goto 12
7 d = 0
8 ifnot d < 10 goto 12
9 a = a + 1
10 d = d + 1
11 goto 8
12 b = 1 - b
13 goto 2
14 Exit

(b)

b = 0

a = 0

ifnot a < 100
goto 14

ifnot b goto 7

C = a

await write C
goto 6

goto 12

d = 0

ifnot d < 10
goto 12

a = a+1

d = d+1

goto 8
b = 1 - b

goto 2Exit

b = 0

a = 0

ifnot a < 100
goto 14

ifnot b goto 7

C = a

await write C
goto 6

goto 12

d = 0

ifnot d < 10
goto 12

a = a+1

d = d+1

goto 8
b = 1 - b

goto 2Exit

(c)

struct channel C = {0, 0};
int C_val;
struct {

bool blocked ;
bool b;
int32 a;
int32 d;

} source = { 0 };

static void source_0() {
source .b = 0;
source .a = 0;
source_1(); return;

}

static void source_1() {
if (!( source .a < 100)) goto L9;
if (!( source .b)) goto L7;
C_val = source.a;
if (BLOCKED_READING(sink, C))

RUN_READER(sink, C);
BLOCK_WRITING(source, C,

source_2);
RUN_NEXT;

L7:
source .d = 0;
source_3(); return;

L9:
RUN_NEXT;

}

static void source_2() {
source_4(); return;

}

static void source_3() {
L1:

if (!( source .d<10)) goto L6;
source .a = source.a + 1;
source .d = source.d + 1;
goto L1;

L6:
source_4(); return;

}

static void source_4() {
source .b = 1 − source.b;
source_1(); return;

}
(d)

Fig. 3. Generating tail-recursive code for a single process. Our compiler translates a
process (a) into an intermediate representation (b). This is translated into a cfg, split
into extended basic blocks (c), finally each block becomes a function (d).



4 Code Generation from Static Schedules

The tail-recursive code generator we presented above uses a clever technique to
reduce run-time scheduling to little more than popping an address off a stack and
jumping to it, but even this amount of overhead can be high for an extremely
simple process such as an adder.

In this section, we describe how to eliminate even this low scheduling over-
head by compiling together groups of concurrently-running processes into a single
imperative process that can be substituted for the group of processes [9]. Effi-
ciency is the advantage of this approach: by analyzing the behavior of a group at
compile time, we are able to eliminate most scheduling overhead. Our procedure
is therefore similar to many known techniques for sequential code generation,
but makes different trade-offs. It generates an automaton for a group of shim

processes using exhaustive simulation that resembles the subset construction al-
gorithm for generating deterministic finite automata from nondeterministic ones.

The disadvantage of this approach is a potential explosion in code size. Since
it builds a product machine from concurrently-running processes, there is a dan-
ger of an exponential state explosion. We do not consider this a serious problem
for two reasons: our abstraction of processes often leads to small machines for
large systems, and it is always possible to synthesize smaller subsets of a sys-
tem and run them dynamically. Our technique therefore provides a controllable
time/space trade-off.

The complete state of a shim system comprises the program counter of each
process and the value of each process-local variable. While we could build an
automaton whose states exactly represent this, it would be impractically large
for all but the simplest programs. Instead we track an abstract version of the
system state in the automaton. While this does defer many computations to
when the generated code is running, it greatly reduces the size of the automata
and hence the generated code. Experimentally, we find this a good trade-off.

Because shim systems tend to have periodic communication patterns, it
turns out we can compile away most of the scheduling overhead and still have
small automata. Unfortunately, while compiling away context-switching over-
head would also be nice, it would demand tracking combinations of reachable
program counter states, something that easily grows exponential. We find our
current solution a good trade-off that can produce impressive speed-ups.

Each state in our generated automaton represents the execution of one pro-
cess between context-switch points or a point where the subnetwork is waiting
for its environment. Each transition corresponds to as many as two separate
communication events, so the automaton represents the system’s communica-
tion pattern. For each state, we copy code from the state’s process and replace
context-switching points with gotos to code for the state’s successors.

Each state’s signature—the system state we insist be unique for each au-
tomaton state—is a flag for each process indicating whether it is runnable plus
a flag for each channel that indicates whether the channel is clear, blocked on
a reader, or blocked on a writer. We deliberately ignore program counters and
local variables in the signature—our abstraction to produce compact automata.



Although we do not consider it part of a state’s signature for matching pur-
poses, we do track what program counter values are possible to streamline the
generated code and reduce the size of the automaton by limiting both the amount
of code generated for each state (unreachable code is omitted) and the number
of successor states. Practically, when we reach a state with the same signature
as an existing one but with new program counter values, we consider the two
states identical and form the union of the program counter sets. Our simulation
procedure thus combines a depth-first search and a relaxation procedure that
finds a fixed point.

Figure 4 shows a simple program being transformed into an automaton. The
program’s three processes (Figure 4(a)) are a sink that always reads, a buffer that
reads and then writes, and a source that sends four numbers and terminates.
Our compiler dismantles processes into statement lists (Figure 4(b)) that are
simulated to produce an automaton (Figure 4(c)). Our compiler then generates
code for each state in the automaton and connects them with gotos, producing
the ir in Figure 4(d). This ir is then passed to the normal code generation
procedure described in Section 3 to produce executable C.

The structure of Figure 4(c) is typical of systems with periodic behavior
that terminate: the first state initializes the system to bring it to where periodic
behavior begins. The loop represents the periodic behavior, and the state just
outside the loop represents a deadlock because the source has terminated.

Each state in Figure 4(c) is labeled with its name; the state of each process,
either runnable (4) or blocked on a channel (2) when the state begins; the state
of each channel (“-” for clear, “R” when its reader is blocked, and “W” when
the writer is blocked); and a set of program counter values that each process
may be in at the beginning of the state. Thus, in State 1, process 0 is blocked,
processes 1 and 2 are runnable, no process is blocked the first channel (A), and
the reader (the sink process) is blocked on the second channel (B). Moreover,
the first process (sink) must be at instruction 1, the second process (buffer), may
be at instruction 0 or 4, and the third process may be at 0, 2, 4, 6, or 8.

A shim system runs consistently under any reasonable scheduling policy [10].
We adopt a scheduling policy that selects the lowest-numbered runnable process.
The automaton we generate, therefore, depends on process labeling (currently
from positions in the source file), but it is guaranteed to produce the same overall
behavior. A better scheduling policy could improve the generated code.

The automaton generation procedure starts with all processes runnable and
all program counters at 0—State 0 in Figure 4(c). Our scheduling policy then
runs the first process—the sink—which executes instruction 0 and blocks on
channel 1 (B), so State 1 has channel 1 blocked on sink. The first runnable
process, 1 (the buffer) starts at instruction 0 in State 1, tries to read from
channel 0 (A), and blocks. This gives State 2, in which the first two processes
(sink and buffer) are blocked and channels 0 and 1 are blocked on them.

The loop in Figure 4(c) (States 1, 2, 3, and 4) is periodic behavior: the buffer
blocks trying to read, the source emits a token, the buffer reads it, the source
reads it, and the loop repeats.



The simulation traces the loop four times because the source can be at four
control points waiting to write on A, but this does not create new states because
each has the same signature; here our choice of signature shrinks the automaton.

State 2 in Figure 4(c) has two successors: the loop (State 3) and State 5.
This is a choice between the three pc values (2, 4, and 6) that lead to a write on
the A channel and a fourth (8) that brings it to termination. State 5 corresponds
to the state in which no process is runnable; the buffer is waiting to read from
the source and the sink is waiting to read from the buffer.

Figure 4(d) is the ir generated from the automaton in Figure 4(c). Each state
produces a code fragment, some of which begin with a switch that sends control
to where the process suspended. The code for each state ends by assigning a
constant to the process’s state variable that indicates where it should resume.
We describe the generation of such switch statement code elsewhere [11]. The
mechanism is analogous to the tail-recursive calls to function pointers described
in Section 3, but keeps the code together.

5 Shim with Functions, Recursion, and Exceptions

The processes-and-networks dialect of shim (Section 2) worked, but we quickly
discovered we missed function calls. We also found that we wanted the ability to
run lightweight blocks of code in parallel rather than require new processes be
declared. Finally, we decided to add exceptions, which turned out to be interest-
ing but technically challenging. The result was, by design, a much more C-like
language, which simplified the task of porting existing C programs into shim.

We began [12] by removing the process/network dichotomy by introducing
the par construct, which starts two or more code blocks in parallel and waits
for them to terminate. To uphold the shim model and its goal of scheduling-
independence, our compiler actually split each code block into a separate func-
tions and carefully determined which variables to pass into and out of it.

A key trick was to infer a pass-by-reference parameter for any variable mod-
ified by the code block and a pass-by-value parameter for any variable only read
by the code block. Furthermore, we prohibited any variable from being passed
by reference more than once at a call site, thus prohibiting any more than one
alias for each variable at any given time.

For example,

x = y;
par

y = x;

swaps the values of x and y. Internally, the compiler expands this into functions:

void block_1(int &x, int y) { x = y; }
void block_2(int &y, int x) { y = x; }

block_1(x, y);
par

block_2(y, x);



process sink(int32 B) {
for (;;) B;

}

process buffer(int32 &B,
int32 A) {

for (;;) B = A;
}

process source(int32 &A) {
A = 17;
A = 42;
A = 157;
A = 8;

}

network main() {
sink ();
buffer ();
source ();

}

(a) Shim code

sink
0 PreRead 1
1 PostRead 1 tmp3
2 goto 0

buffer
0 PreRead 0
1 PostRead 0 tmp2
2 tmp1 := tmp2
3 Write 1 tmp1
4 goto 0

source
0 tmp4 := 17
1 Write 0 tmp4
2 tmp5 := 42
3 Write 0 tmp5
4 tmp6 := 157
5 Write 0 tmp7
6 tmp8 := 8
7 Write 0 tmp8
8 Exit

(b) Dismantled

State 0
444 --
{0}{0}{0}

State 1
244 -R

{1}{0, 4}{0, 2, 4, 6, 8}

State 2
224 RR

{1}{1}{0, 2, 4, 6, 8}

State 3
242 WR

{1}{1}{2, 4, 6, 8}

State 4
424 -W

{1}{4}{2, 4, 6, 8}

State 5
222 RR
{1}{1}{8}

(c) The automaton

0 /* State 0 (sink) */
1 sink_state = 1
2 goto 3

3 /* State 1 (buffer) */
4 switch buffer_state

case 0: goto 8
case 4: goto 7

5 buffer_state = 1
6 goto 9
7 goto 5
8 goto 5

9 /* State 2 (source) */
10 switch source_state

case 0: goto 29
case 2: goto 25
case 4: goto 21
case 6: goto 17
case 8: goto 15

11 value__V0 = 17
12 A__V0 = value__V0
13 source_state = 2
14 goto 30
15 source_state = 8
16 goto 42
17 value__V3 = 8
18 A__V0 = value__V3
19 source_state = 8
20 goto 30
21 value__V2 = 157
22 A__V0 = value__V2
23 source_state = 6
24 goto 30
25 value__V1 = 42
26 A__V0 = value__V1
27 source_state = 4
28 goto 30
29 goto 11

30 /* State 3 (buffer) */
31 value__V5 = A__V0
32 received 0 in value__V5
33 value__V4 = value__V5
34 B__V1 = value__V4
35 buffer_state = 4
36 goto 37

37 /* State 4 (sink) */
38 value__V6 = B__V1
39 received 1 in value__V6
40 sink_state = 1
41 goto 3

42 /* State 5 (blocked) */
43 exit

(d) The generated IR

Fig. 4. Synthesizing the automaton for three concurrently-running processes. The shim

code (a) is first translated into a linear ir (b) that splits read operations into two halves.
Simulating these processes produces an automaton (c), from which a different type of
ir is generated (d). This is passed to the code generation algorithm in Section 3 to be
translated into C.



void sink(chan uint32 D) {
for (;;) recv D;

}

void receiver(chan uint32 C,
chan uint32 &D) {

int a;
a = D = 0;
for (;;) {

while (next C)
a = a + next C;

D = D + 1;
send D;
next D = a;

}
}

void sender(chan uint32 &C) throws Done {
int d, e;
for ( d = 0 ; d < 4 ; d = d + 1) {

for ( e = d ; e > 0 ; e = e − 1 ) {
next C = 1;
next C = e;

}
next C = 0;

}
throw Done;

}

void main() {
chan uint32 C, D;
try

sender(C); par receiver(C, D); par sink(D);
catch (Done) {}

}

Fig. 5. The program of Figure 1 coded in the latest shim dialect. We added par, chan,
send, recv, next, try, catch, and throw and removed the distinction between processes
and networks: both are now functions.

Here, the two block functions run in parallel. The first is passed a reference
to x and a copy of y, the second a reference to y and a copy of x. Thus, the
assignments can happen in either order and produce the same result.

We also made the syntax for communication on channels more explicit by
adding send, recv, and next keywords, rather than make it simply a side-effect
of referencing a channel. Although clarity was the main motivation for adding
send and recv (the previous policy confused many users), was also found we were
often reading a value from a channel and storing it locally so we could refer to
it multiple times. We attempted to retain the communication-in-an-expression
syntax by introducing the next keyword, which sends on a channel if it appears
on the left side of an assignment and receives when it appears elsewhere. While
it can make for very succinct code (next b = next a is a succinct way of writing a
buffer), users continue to find it confusing and prefer the send and recv syntax.
Figure 5 shows the program of Figure 1 coded in this new dialect.

We also added the facility for multiway rendezvous. Although a channel may
be passed by reference only once, it may be passed by value an unlimited number
of times. In this case, each function that receives a pass-by-value copy of the
channel is required to participate in any rendezvous on the channel. A primary
motivation of this was to facilitate debugging—it is easy now to add processes
that monitor channels without affecting a system’s behavior. In retrospect, this
facility is sparsely used, difficult to implement, and slows down the more typical
point-to-point communication unless carefully optimized away.



void buffer(int i , int &o) {
for (;;) {

recv i ;
o = i;
send o;

}
}

void fifo (int i , int &o, int n) {
int c; int m = n − 1;
if (m)

buffer ( i , c) par fifo (c, o, m);
else

buffer ( i , o);
}

Fig. 6. An n-place fifo specified using recursion, from Tardieu and Edwards [12]

5.1 Recursion

When we introduced function calls, we had to consider how to handle recursion.
Our main goal was to make basic function calls work, allowing the usual re-use
of code, but we also found that recursion, especially bounded recursion, was an
interesting mechanism for specifying more complex structures.

Figure 6 illustrates this style. The recursive fifo procedure calls itself repeat-
edly in parallel, effectively instantiating buffer processes as it goes. This recursion
runs only once, when the program starts, to set up a chain of single-place buffers.

We developed a technique for removing bounded recursion from shim pro-
grams [13]. One goal was to simplify shim’s translation into hardware, where
general recursion would require memory for a stack and choosing a size for it,
but it has found many other uses. In particular, if all the recursion in a program
is bounded, the program is finite-state, simplifying other analysis steps.

The basic idea of our work was to unroll recursive calls by exactly tracking the
behavior of variables that control the recursion. Our insight was to observe that
for a recursive function to terminate, the recursive call must be within the scope
of a conditional. Therefore, we need to track the predicate of this conditional,
see what can affect it, and so forth.

Figure 7 shows the transformation of a simple fifo. Our procedure produces
the static version in Figure 7(b) by observing that the n variable controls the
predicate around fifo’s recursive call. Then it notices n is set first to 3 by fifo3
and generates three specialized versions of fifo—one with n = 3, n = 2, and
n = 1—simplifies each, then inlines each function, since each is only called once.

Of course, in the worst case our procedure could end up trying to track every
variable in the program, which would be impractical, but in programs written
with this idiom in mind, recursion control only involved a few variables, making
it easy to resolve.

5.2 Exceptions

At this stage, we also added exceptions [14], without question the most tech-
nically difficult addition we have made. Inspired by the Esterel language [15],
where exceptions are used not just for occasional error handling but as widely
as, say, if-then-else, we wanted our exceptions to be widely applicable and be
concurrent and scheduling-independent.



void fifo3 (chan int i, chan int &o) {
fifo ( i , o, 3);

}

void fifo (chan int i, chan int &o, int n) {
if (n > 1) {
chan int c;
buf( i , c); par fifo (c, o, n−1);

} else buf( i , o);
}

void buf(chan int i, chan in &o) {
int tmp;
for (;;) {

tmp = recv i;
send o = tmp;

}
}

(a)

void fifo3 (chan int i, chan int &o) {
chan int c1, c2, c3;

buf( i , c1);
par

buf(c1, c2);
par

buf(c2, o);
}

void buf(chan int i, chan in &o) {
int tmp;
for (;;) {

tmp = recv i;
send o = tmp;

}
}

(b)

Fig. 7. Removing bounded recursion, controlled by the n variable, from (a) gives (b).
After Edwards and Zeng [13].

For sequential code, the desired exception semantics were clear: throwing an
exception immediately sends control to the most-recently-entered handler for the
given exception, terminating any functions that were called in between.

For concurrently running functions, the right behavior was less obvious. We
wanted to terminate everything leading up to the handler, including any con-
currently running relatives, but we insisted on maintaining shim’s scheduling
independence, meaning we had to carefully time when the effect of an excep-
tion was felt. Simply terminating siblings when one called an exception would
be nondeterministic: the behavior would then depend on the relative execution
rates of of the processes and thus not be scheduling independent.

Our solution was to piggyback the exception mechanism on the communi-
cation system. The idea was that a process would only learn of an exception
when it attempted to communicate, since it is only at rendezvous points that
two processes agree on what time it is. Thus, shim’s exception mechanism is
layered on the inter-process communication mechanism to preserve determinism
while providing powerful sequential control.

To accommodate exceptions, we introduced a new “poisoned” state for a pro-
cess that represents when it has been terminated by an exception and is waiting
for its relatives to terminate. Any process that attempts to communicate with a
poisoned process will itself become poisoned. In Figure 9, the first thread throws
an exception; the second thread is poisoned when it attempts to rendezvous on
i, and the third is poisoned by the second when it attempts to rendezvous on j.

The idea was simple enough, and the interface it presented to the programmer
could certainly be used and explained without much difficulty, but implementing



void main() {
int i ; i = 0;
try {

i = 1;
throw T;
i = i ∗ 2; // not executed

} catch(T) {
i = i ∗ 3; // i = 3

}
}

(a)

void main() {
int i ;
i = 0;
try { // thread 1

throw T;
} par { // thread 2

for (;;) // never terminated
i = i + 1;

} catch(T) {}
}

(b)

Fig. 8. (a) Sequential exception semantics are classical. (b) Thread 2 never feels the
effect of the exception because it never communicates. From Tardieu and Edwards [14].

void main() {
chan int i = 0, j = 0;
try { // task 1

while (i < 5) send i = i + 1;
throw T; // poisons itself

} par { // task 2
for (;;) send j = recv i + 1; // poisoned by task 1

} par { // task 3
for (;;) recv j ; // poisoned by task 2

} catch (T) {}
}

Fig. 9. Transitive poisoning: throw T poisons the first task, which poisons the second
when the second attempts recv i. Finally the third is poisoned when it attempts recv j
and the whole group terminates.

it turned out to be a huge challenge, despite there being fairly simple set of
structural operational semantics rules for it.

The real complexity came from a combination of having to implement excep-
tion scope, which limits how far the poison propagates (it does not propagate
outside the scope of the exception) and how that interacts with the scope of
multiple, concurrently thrown exceptions.

6 Generating Threaded Code

To handle multiway rendezvous and exceptions on multiprocessors, we needed
a new technique. Our next backend [16] generates C code that calls the posix

thread library. Here, the challenge is minimizing overhead. Each communication
action acquires the lock on a channel, checks whether every connected process
had also blocked (whether the rendezvous could occur), and then checks if the
channel is connected to a poisoned process (an exception had been thrown).



void h(chan int &A) {
A = 4; send A;
A = 2; send A;

}

void j(chan int A) throws Done {
recv A;
throw Done;

}

void f(chan int &A) throws Done {
h(A); par j(A);

void g(chan int A) {
recv A;
recv A;

}

void main() {
try {

chan int A;
f(A); par g(A);

} catch (Done) {}
}

Fig. 10. A shim program with exceptions

6.1 An Example

We will use the example in Figure 10 to illustrate threaded code generation.
There, the main function declares the integer channel A and passes it to tasks f
and g, then f passes it to h and j. Tasks f and h send data with send A Tasks
g and j receive it with recv A.

Task h sends the value four to tasks g and j. Task h blocks on the second
send A because task j does not run a matching recv A.

As we described earlier, shim’s exceptions enable a task to gracefully inter-
rupt its concurrently running siblings. A sibling is “poisoned” by an exception
only when it attempts to communicate with a task that raised an exception or
with a poisoned task. For example, when j in Figure 10 throws Done, it inter-
rupts h’s second send A and g ’s seconds recv A, resulting in the death of h and
g. An exception handler runs after all the tasks in its scope have terminated or
been poisoned.

6.2 The Static Callgraph Assumption

For efficiency, our compiler assumes the communication and call graph of the
program is known at compile time. We reject programs with unbounded recursion
and can expand programs with bounded recursion [13], allowing us to transform
the call graph into a call tree. This duplicates code to improve performance:
fewer channel aspects are managed at run time.

We encode in a bit vector the subtree of functions connected to a channel.
Since we know at compile time which functions can connect to each channel, we
assign a unique bit to each function on a channel. We check these bits at run
time with logical mask operations. In the code, something like A_f is a constant
that holds the bit our compiler assigns to function f connected to channel A,
such as 0x4.



lock(A.mutex); /∗ acquire lock for channel A ∗/
A.blocked |= (A_h|A_f|A_main); /∗ block h and ancestors on A ∗/
event_A(); /∗ alert channel of the change ∗/
while (A.blocked & A_h) { /∗ while h remains blocked ∗/

if (A.poisoned & A_h) { /∗ were we poisoned? ∗/
unlock(A.mutex);
goto _poisoned;

}
wait(A.cond, A.mutex); /∗ wait on channel A ∗/

}
unlock(A.mutex); /∗ release lock for channel A ∗/

Fig. 11. C code for send A in function h() of Figure 10

6.3 Implementing Rendezvous Communication

Implementing shim’s multiway rendezvous communication with exceptions is the
main code generation challenge.

The code at a send or receive is straightforward: it locks the channel, marks
the function and its ancestors as blocked, calls the event function for the channel
to attempt the communication, and blocks until communication has occurred.
If it was poisoned, it branches to a handler. Figure 11 is the code for send A in
h in Figure 10.

For each channel, our compiler generates an event function that manages
communication. Our code calls an event function when the state of a channel
changes, such as when a task blocks or connects to a channel.

Figure 12 shows the event function our compiler generates for channel A
in Figure 10. While complex, the common case is quick: when the channel is
not ready (one connected task is not blocked on the channel) and no task is
poisoned, A.connected != A.blocked and A.poisoned == 0 so the bodies of the
two if statements are skipped.

If the channel is ready to communicate, A.blocked == A.connected so the
body of the first if runs. This clears the channel blocked = 0 ) and main’s value
for A (passed by reference to f and h) is copied to g or j if connected.

If at least one task connected to the channel has been poisoned, A.poisoned !=
0 so the body of the second if runs. This code comes from unrolling a recursive
procedure at compile time, which is possible because we know the structure of
the channel (i.e., which tasks connect to it). The speed of such code is a key
advantage over a library.

This exception-propagation code attempts to determine which tasks, if any,
connected to the channel should be poisoned. It does this by manipulating two
bit vectors. A task can_die if and only if it is blocked on the channel and all its
children connected to the channel (if any) also can_die. A poisoned task may
kill its sibling tasks and their descendants. Finally, the code kills each task in
the kill set that can_die and was not poisoned before by setting its state to
poison and updating the channel accordingly (A.poisoned |= kill).



void event_A() {
unsigned int can_die = 0, kill = 0;
if (A.connected == A.blocked) { /∗ communicate ∗/

A.blocked = 0;
if (A.connected & A_g) ∗A.g = ∗A.main;
if (A.connected & A_j) ∗A.j = ∗A.main;
broadcast(A.cond);

} else if (A.poisoned) { /∗ propagate exceptions ∗/
can_die = blocked & (A_g|A_h|A_j); /∗ compute can_die set ∗/
if (can_die & (A_h|A_j) == A.connected & (A_h|A_j))

can_die |= blocked & A_f;
if (A.poisoned & (A_f|A_g)) { /∗ compute kill set ∗/

kill |= A_g; if (can_die & A_f) kill |= (A_f|A_h|A_j);
}
if (A.poisoned & (A_h|A_j)) { kill |= A_h; kill |= A_j; }
if ( kill &= can_die & ~A.poisoned) { /∗ poison some tasks? ∗/

unlock(A.mutex);
if ( kill & A_g) { /∗ poison g if in kill set ∗/

lock(g.mutex);
g. state = POISON;
unlock(g.mutex);

}
/∗ also poison f , h, and j if in kill set ... ∗/
lock(A.mutex);
A.poisoned |= kill ; broadcast(A.cond);

} } }

Fig. 12. C code for the event function for channel A of Figure 10

lock(main.mutex); main.state = POISON; unlock(main.mutex);
lock( f .mutex); f . state = POISON; unlock(f.mutex);
lock( j .mutex); j . state = POISON; unlock(j.mutex);
goto _poisoned;

Fig. 13. C code for throw Done in function j() of Figure 10

Code for throwing an exception (Figure 13) marks as poison all its ancestors
up to where it will be handled. Because the compiler knows the call tree, it knows
how far to “unroll the stack,” i.e., how many ancestors to poison.

6.4 Starting and Terminating Tasks

It is costly to create and destroy a posix thread because each has a separate
stack, it requires interaction with the operating system’s scheduler, and it usually
requires a system call. To minimize this overhead, because we know the call graph
of the program at compile time, our compiler generates code that creates at the
beginning as many threads as the shim program will ever need. These threads
are only destroyed when the shim program terminates; if a shim task terminates,
its posix thread blocks until it is re-awakened.



lock(A.mutex); /∗ connect ∗/
A.connected |= (A_f|A_g);
event_A();
unlock(A.mutex);

lock(main.mutex);
main.attached_children = 2;
unlock(main.mutex);

lock( f .mutex); /∗ pass args ∗/
f .A = &A;
unlock(f .mutex);

/∗ A is dead on entry for g,
so do not pass A to g ∗/

lock( f .mutex); /∗ run f() ∗/
f . state = RUN; broadcast(f.cond);
unlock(f .mutex);

lock(g.mutex); /∗ run g() ∗/
g. state = RUN; broadcast(g.cond);
unlock(g.mutex);

lock(main.mutex); /∗ wait for children ∗/
while (main.attached_children)

wait(main.cond, main.mutex);
if (main.state == POISON) {

unlock(main.mutex);
goto _poisoned;

}
unlock(main.mutex);

Fig. 14. C code for calling f() and g() in main() of Figure 10

Figure 14 shows the code in main that runs f and g in parallel. It connects f
and g to channel A, sets its number of live children to 2, passes function param-
eters, then starts f and g. The address for the pass-by-reference argument A is
passed to f. Normally, a value for A would be passed to g, but our compiler found
this value is not used so the copy is avoided (discussed below). After starting f
and g, main waits for both children to return. Then main checks whether it was
poisoned, and if so, branches to a handler.

Reciprocally, Figure 15 shows the code in f that controls its execution: an
infinite loop that waits for main, its parent, to set its state field to running, at
which point it copies its formal arguments into local variables and runs its body.

If a task terminates normally, it cleans up after itself. In Figure 15, task f
disconnects from channel A, sets its state to stop, and informs main it has one
less running child.

By contrast, if a task is poisoned, it may still have children running and
it may also have to poison sibling tasks so it cannot entirely disappear yet.
In Figure 15, task f, if poisoned, does not disconnect from A but updates its
poisoned field. Then, task f waits for its children to return. At this time, f can
disconnect its (potentially poisoned) children from channels, since they can no
longer poison siblings. Finally, f informs main it has one less running child.

For ibm’s cell processor, we developed a backend [17] that is a direct offshoot
of the pthreads backend but allowed the user to assign certain (computationally
intensive) tasks directly to the cell’s eight synergistic processing units (spus);
the rest of the tasks ran on the cell’s standard PowerPC core (ppu). We did
this by replacing these offloaded functions with wrapper functions that commu-
nicated across the ppu-spu boundary. Function calls across the boundary turned
out to be fairly technical because of data alignment restrictions on function ar-
guments, which we would have preferred to be stack-resident. This, and many



int ∗A; /∗ value of channel A ∗/

_restart :
lock( f .mutex);
while (f . state != RUN)

wait( f .cond, f .mutex);
A = f.A; /∗ copy arg. ∗/
unlock(f .mutex);

/∗ body of the f task ∗/

_terminated:
lock(A.mutex); /∗ disconnect f ∗/
A.connected &= ~A_f;
event_A();
unlock(A.mutex);

lock( f .mutex); /∗ stop ∗/
f . state = STOP;
unlock(f .mutex);
goto _detach;

_poisoned:
lock(A.mutex); /∗ poison A ∗/
A.poisoned |= A_f;
A.blocked &= ~A_f; event_A();
unlock(A.mutex);

lock( f .mutex); /∗ wait for children ∗/
while (f .attached_children)

wait( f .cond, f .mutex);
unlock(f .mutex);

lock(A.mutex); /∗ disconnect j , h ∗/
A.connected &= ~(A_h|A_j);
A.poisoned &= ~(A_h|A_j);
event_A();
unlock(A.mutex);

_detach: /∗ detach from parent ∗/
lock(main.mutex);
−−main.attached_children;
broadcast(main.cond);
unlock(main.mutex);
goto _restart;

Fig. 15. C code in function f() controlling its execution

more fussy aspects of coding for the cell, did convince us that language at a
higher level than C is appropriate for such heterogeneous multicore processors.

7 Detecting Deadlocks

Shim, although race free, is not immune to deadlocks. A simple example is {
recv a; recv b; } par { send b; send a; }, which deadlocks because the first task
is attempting to communicate on a first yet the second, which is also connected
to a, excepts b to be first. Fortunately, shim’s scheduling independence means
that for a given input sequence, a shim program behaves the same for all ex-
ecutions of the program, and thus either always deadlocks or never deadlocks.
In particular, shim does not need to be analyzed under an interleaved model of
concurrency, rendering all the partial order reduction tricks of model checkers
such as Holzmann’s spin [1] unnecessary for shim.

Our first attempt at detecting deadlocks in shim [18] employs the symbolic
synchronous model checker nusmv [19]—an interesting choice since shim’s con-
currency model is fundamentally asynchronous. Our approach abstracts away
data operations and chooses a specific schedule in which each communication
event takes a single cycle. This reduces the shim program to a set of communi-
cating state machines suitable for the nusmv model checker.

We have since continued our work on deadlock detection in shim [20]. Here
we take a compositional approach in which we build an automaton for a complete
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void main()
{

chan int a, b, c, d;
for (;;) {

recv a; b = a + 1; send b;
} par for(;;) {

recv b; c = b + 1; send c;
} par for(;;) {

recv c; d = c + 1; send d;
} par for(;;) {

recv d; a = d + 1; send a;
}

} (a)

Fig. 16. Analyzing a four-task shim program (a) for deadlock. Composing the au-
tomata for the first (b) and second (c) tasks gives a product automaton (d). Channel
b only appears in the first two tasks, so we abstract away its effect by identifying (e)
and merging (f) equivalent states. Next, we compose this simplified automaton with
that for the third task (g) to produce another (h). Now, channel c will not appear
again, so again we identify (i) and merge (j) states. Finally, we compose this with the
automaton for the fourth task (k) to produce a single, deadlocked state (l) because the
fourth task insists on communicating first on d but the other three communicate first
on a. The direct composition of the first three tasks without removing channels (m) is
larger—eight states.

system piece by piece. Our insight is that we can usually abstract away internal
channels and simplify the automaton without introducing or avoiding deadlocks.
The result is that even though we are doing explicit model-checking, we can often
do it much faster than a brute-force symbolic model checker such as nusmv.

Figure 16 shows our technique in action. Starting from the (contrived) pro-
gram, we first abstract the behavior of the first two tasks into simple automata.
The first task communicates on channel a, then on channel b, then repeats; the
second task does the same on channels b and c. We compose these automata by
allowing either to take a step on unshared channels but insisting on a rendezvous
when a channel is shared. Then, since channel b is local to these two tasks, we



abstract away its behavior by merging two states. This produces a simplified
automaton that we then compose with the automaton for the third task. This
time, channel c is local, so again we simplify the automaton and compose it with
the automaton for the fourth task. The automaton we obtained for the first three
tasks insists on communicating first on a then d ; the fourth tasks communicates
on d then a. This is a deadlock, which manifests itself as a state with no outgoing
arcs.

For programs that follow such a pipeline pattern, the number of states grows
exponentially with the number of pipeline stages (precisely, n stages produce 2n

states), yet our analysis only builds machines with 2n states before simplifying
them to n + 1 states at each step. Although we still have to step through and
analyze each of the n stages (leading to quadratic complexity), this is still a
substantial improvement.

Of course, our technique cannot always reduce an exponential state space to
a polynomial one, but we find it often did on the example programs we tried.

8 Sharing Buffers

We also applied the model-checking approach from the previous section to search
for situations where buffer memory can be shared [21]. In general, each commu-
nication channel needs its own space to store any data being communicated over
it, but in certain cases, it is possible to prove that two channels can never be
active simultaneously.

In the program in Figure 17, the main task starts four tasks in parallel. Tasks
1 and 2 communicate on a. Then, tasks 2 and 3 communicate on b and finally
tasks 3 and 4 on c. The value of c received by task 4 is 8. Communication on a
cannot occur simultaneously with that of b because task 2 forces them to occur
sequentially them. Similarly communications on b and c are forced to be sequen-
tial by task 3. Communications on a and c cannot occur together because they
are forced to be sequential by the communication on b. Our tool understands
this pattern and reports that a, b, and c can share buffers because their commu-
nications never overlap, thereby reducing the total buffer requirements by 66%
for this program.

9 Conclusions

The central hypothesis of the shim project is that its simple, deterministic se-
mantics helps both programming and automated program analysis. That we
have been able to devise truly effective mechanisms for clever code generation
(e.g., static scheduling) and analysis (e.g., deadlock detection) that can gain deep
insight into the behavior of programs vindicates this view. The bottom line: if
a programming language does not have simple semantics, it is really hard to
analyze its programs quickly or precisely.



void main()
{
chan int a, b, c;
{

// Task 1
send a = 6; // Send a (synchronize with task 2)

} par {
// Task 2
recv a; // Receive a (synchronize with task 1)
send b = a + 1; // Send 7 on b (synchronize with task 3)

} par {
// Task 3
recv b; // Receive b (synchronize with task 2)
send c = b + 1; // Send 8 on c (synchronize with task 4)

} par {
// Task 4
recv c; // Receive c (synchronize with task 3}
// c = 8 here

}
}

Fig. 17. A shim program that illustrates the possibility of buffer sharing. Channels a,
b, and c are never active simultaneously and can therefore share buffer space.

Algorithms where there is a large number of little, variable-sized, but inde-
pendent pieces of work to be done do not mesh well with shim’s scheduling-
independent philosophy as it currently stands. The obvious way to handle this
is to maintain a bucket of tasks and assign each task to a processor once it has
finished its last task. The order in which the tasks is performed, therefore, de-
pends on their relative execution rates, but this does not matter if the tasks are
independent. It would be possible to add scheduling-independent task distribu-
tion and scheduling to shim (i.e., provided the tasks are truly independent or,
equivalently, confluent); exactly how is an open research question.

Exceptions have been even more painful than multiway rendezvous. They are
extremely convenient from a programming standpoint (e.g., shim’s rudimentary
I/O library wraps each program in an exception to allow it to terminate grace-
fully; virtually every compiler test case includes at least a single exception), but
extremely difficult to both implement and reason about.

An alternative is to turn exceptions into syntactic sugar layered on the
exception-free shim model. We always had this in the back our minds: an excep-
tion would just put a process into an unusual state where it would communicate
its poisoned state to any process that attempts to communicate with it. The
problem is that the complexity tends to grow quickly when multiple, concurrent
exceptions and scopes are considered. Again, exactly how to translate exceptions
into a simpler shim model remains an open question.

That buffering is mandatory for high-performance parallel applications is
hardly a revelation; we confirmed it anyway. The shim model has always been



able to implement fifo buffers (e.g., Figure 6), but we have realized that they
are sufficiently fundamental to be a first-class type in the language. We are
currently working on a variant of the language that replaces pure rendezvous
communication with bounded, buffered communication. Because it will be part
of the language, it will be easier to map to unusual environments, such as the
dma mechanism for inter-core communication on the cell processor.

Shim has already been an inspiration for aspects of some other languages.
We ported its communication model into the Haskell functional language [22]
and proposed a compiler that would impose its scheduling-independent view of
the work on arbitrary programs [23]. Certain shim ideas, such as scheduling
analysis [24], have also been used in ibm’s X10 language.
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