47 research outputs found

    Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria.

    Get PDF
    Microorganisms live in a myriad of ecological niches. The human intestine is among the most densely populated environments; here, a multitude of bacteria appear to have co-evolved to impact beneficially upon the health of their human host. The precise molecular mechanisms and signaling pathways employed by commensal bacteria, including those that facilitate colonization and persistence, remain largely unknown despite the perceived positive effects of such host-microbe interactions. In this review we discuss several fascinating relationships between the gastrointestinal tract and commensal bacteria, with particular emphasis on bifidobacteria as a prototypical group of human enteric microorganisms

    Implementation of transposon mutagenesis in Bifidobacterium

    Get PDF
    Random transposon mutagenesis allows for relatively rapid, genome-wide surveys to detect genes involved in functional traits, by performing screens of mutant libraries. This approach has been widely applied to identify genes responsible for activities of interest in multiple eukaryote and prokaryote organisms, although most studies on microorganisms have focused on pathogenic and clinically relevant bacteria. In this chapter we describe the implementation of an in vitro Tn5-based transposome strategy to generate a large collection of random mutants in the gut commensal Bifidobacterium breve UCC2003, and discuss considerations when applying this mutagenesis system to other Bifidobacterium species or strains of interest

    Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort

    Get PDF
    BACKGROUND The effects of antibiotics on infant gut microbiota are unclear. We hypothesized that the use of common antibiotics results in long-term aberration in gut microbiota. METHODS Antibiotic-naive infants were prospectively recruited when hospitalized because of a respiratory syncytial virus infection. Composition of fecal microbiota was compared between those receiving antibiotics during follow-up (prescribed at clinicians' discretion because of complications such as otitis media) and those with no antibiotic exposure. Fecal sampling started on day 1, then continued at 2-day intervals during the hospital stay, and at 1, 3 and 6 months at home. RESULTS One hundred and sixty-three fecal samples from 40 patients (median age 2.3 months at baseline; 22 exposed to antibiotics) were available for microbiota analyses. A single course of amoxicillin or macrolide resulted in aberration of infant microbiota characterized by variation in the abundance of bifidobacteria, enterobacteria and clostridia, lasting for several months. Recovery from the antibiotics was associated with an increase in clostridia. Occasionally, antibiotic use resulted in microbiota profiles associated with inflammatory conditions. CONCLUSIONS Antibiotic use in infants modifies especially bifidobacterial levels. Further studies are warranted whether administration of bifidobacteria will provide health benefits by normalizing the microbiota in infants receiving antibiotics.Peer reviewe

    Gene expression of bacterial collagenolytic proteases in root caries

    Get PDF
    Objective: It is unknown whether bacteria play a role in the collagen matrix degradation that occurs during caries progression. Our aim was to characterize the expression level of genes involved in bacterial collagenolytic proteases in root biofilms with and without caries. Method: we collected samples from active cavitated root caries lesions (RC, n = 30) and from sound root surfaces (SRS, n = 10). Total microbial RNA was isolated and cDNA sequenced on the Illumina Hi-Seq2500. Reads were mapped to 162 oral bacterial reference genomes. Genes encoding putative bacterial collagenolytic proteases were identified. Normalization and differential expression analysis was performed on all metatranscriptomes (FDR8) but none in SRS were Pseudoramibacter alactolyticus [HMPREF0721_RS02020; HMPREF0721_RS04640], Scardovia inopinata [SCIP_RS02440] and Olsenella uli DSM7084 [OLSU_RS02990]. Conclusion: Our findings suggest that the U32 proteases may be related to carious dentine. The contribution of a small number of species to dentine degradation should be further investigated. These proteases may have potential in future biotechnological and medical applications, serving as targets for the development of therapeutic agents

    Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms

    Get PDF
    corecore