6,702 research outputs found

    Stochastic Resonance: influence of a f−Îșf^{-\kappa} noise spectrum

    Get PDF
    Here, in order to study \textit{stochastic resonance} (SR) in a double-well potential when the noise source has a spectral density of the form f−Îșf^{-\kappa} with varying Îș\kappa, we have extended a procedure, introduced by Kaulakys et al (Phys. Rev. E \textbf{70}, 020101 (2004)). In order to have an analytical understanding of the results, we have obtained an effective Markovian approximation, that allows us to make a systematic study of the effect of such kind of noises on the SR phenomenon. The comparison of numerical and analytical results shows an excellent qualitative agreement indicating that the effective Markovian approximation is able to correctly describe the general trends.Comment: 11 pages, 6 figures, submitted to Euro.Phys.J.

    Magnetoelectric properties of 500 nm Cr2O3 films

    Get PDF
    The linear magnetoelectric effect was measured in 500 nm Cr2O3 films grown by rf sputtering on Al2O3 substrates between top and bottom thin film Pt electrodes. Magnetoelectric susceptibility was measured directly by applying an AC electric field and measuring the induced AC magnetic moment using superconducting quantum interference device magnetometry. A linear dependence of the induced AC magnetic moment on the AC electric field amplitude was found. The temperature dependence of the magnetoelectric susceptibility agreed qualitatively and quantitatively with prior measurements of bulk single crystals, but the characteristic temperatures of the film were lower than those of single crystals. It was also possible to reverse the sign of the magnetoelectric susceptibility by reversing the sign of the magnetic field applied during cooling through the N\'eel temperature. A competition between total magnetoelectric and Zeeman energies is proposed to explain the difference between film and bulk Cr2O3 regarding the cooling field dependence of the magnetoelectric effect.Comment: accepted at Physical Review

    Disorder and dephasing effect on electron transport through conjugated molecular wires in molecular junctions

    Get PDF
    Understanding electron transport processes in molecular wires connected between contacts is a central focus in the field of molecular electronics. Especially, the dephasing effect causing tunneling-to-hopping transition has great importance from both applicational and fundamental points of view. We analyzed coherent and incoherent electron transmission through conjugated molecular wires by means of density-functional tight-binding theory within the D'Amato-Pastawski model. Our approach can study explicitly the structure/transport relationship in molecular junctions in a dephasing environmental condition using only single dephasing parameter. We investigated the length dependence and the influence of thermal fluctuations on transport and reproduced the well-known tunneling-to-hopping transition. This approach will be a powerful tool for the interpretation of recent conductance measurements of molecular wires.Comment: 6 pages, 7 figures, accepted for publication in Phys. Rev.

    Control of quantum interference in molecular junctions: Understanding the origin of Fano and anti- resonances

    Full text link
    We investigate within a coarse-grained model the conditions leading to the appearance of Fano resonances or anti-resonances in the conductance spectrum of a generic molecular junction with a side group (T-junction). By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the different electronic parameters determining the regimes where Fano resonances or anti-resonances in the low-energy conductance spectrum can be expected. The results obtained within the coarse-grained model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions.Comment: 5 pages, 5 figure

    Lithium Diffusion & Magnetism in Battery Cathode Material LixNi1/3Co1/3Mn1/3O2

    Full text link
    We have studied low-temperature magnetic properties as well as high-temperature lithium ion diffusion in the battery cathode materials LixNi1/3Co1/3Mn1/3O2 by the use of muon spin rotation/relaxation. Our data reveal that the samples enter into a 2D spin-glass state below TSG=12 K. We further show that lithium diffusion channels become active for T>Tdiff=125 K where the Li-ion hopping-rate [nu(T)] starts to increase exponentially. Further, nu(T) is found to fit very well to an Arrhenius type equation and the activation energy for the diffusion process is extracted as Ea=100 meV.Comment: Submitted to Journal of Physics: Conference Series (2014

    Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition

    Get PDF
    We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau_I, has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau_I. In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the underlying `ideal' glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr
    • 

    corecore