55 research outputs found

    Extracting individual characteristics from population data reveals a negative social effect during honeybee defence

    Get PDF
    Honeybees protect their colony against vertebrates by mass stinging and they coordinate their actions during this crucial event thanks to an alarm pheromone carried directly on the stinger, which is therefore released upon stinging. The pheromone then recruits nearby bees so that more and more bees participate in the defence. However, a quantitative understanding of how an individual bee adapts its stinging response during the course of an attack is still a challenge: Typically, only the group behaviour is effectively measurable in experiment; Further, linking the observed group behaviour with individual responses requires a probabilistic model enumerating a combinatorial number of possible group contexts during the defence; Finally, extracting the individual characteristics from group observations requires novel methods for parameter inference. We first experimentally observed the behaviour of groups of bees confronted with a fake predator inside an arena and quantified their defensive reaction by counting the number of stingers embedded in the dummy at the end of a trial. We propose a biologically plausible model of this phenomenon, which transparently links the choice of each individual bee to sting or not, to its group context at the time of the decision. Then, we propose an efficient method for inferring the parameters of the model from the experimental data. Finally, we use this methodology to investigate the effect of group size on stinging initiation and alarm pheromone recruitment. Our findings shed light on how the social context influences stinging behaviour, by quantifying how the alarm pheromone concentration level affects the decision of each bee to sting or not in a given group size. We show that recruitment is curbed as group size grows, thus suggesting that the presence of nestmates is integrated as a negative cue by individual bees. Moreover, the unique integration of exact and statistical methods provides a quantitative characterisation of uncertainty associated to each of the inferred parameters

    Geosmin suppresses defensive behaviour and elicits unusual neural responses in honey bees.

    Get PDF
    Geosmin is an odorant produced by bacteria in moist soil. It has been found to be extraordinarily relevant to some insects, but the reasons for this are not yet fully understood. Here we report the first tests of the effect of geosmin on honey bees. A stinging assay showed that the defensive behaviour elicited by the bee's alarm pheromone component isoamyl acetate (IAA) is strongly suppressed by geosmin. Surprisingly, the suppression is, however, only present at very low geosmin concentrations, and disappears at higher concentrations. We investigated the underlying mechanisms at the level of the olfactory receptor neurons by means of electroantennography, finding the responses to mixtures of geosmin and IAA to be lower than to pure IAA, suggesting an interaction of both compounds at the olfactory receptor level. Calcium imaging of the antennal lobe (AL) revealed that neuronal responses to geosmin decreased with increasing concentration, correlating well with the observed behaviour. Computational modelling of odour transduction and coding in the AL suggests that a broader activation of olfactory receptor types by geosmin in combination with lateral inhibition could lead to the observed non-monotonic increasing-decreasing responses to geosmin and thus underlie the specificity of the behavioural response to low geosmin concentrations

    Can ecosystem-based deep-sea fishing be sustained?

    Get PDF
    Can there ever be a truly sustainable deep-sea fishery and if so, where and under what conditions? Ecosystembased fisheries management requires that this question be addressed such that habitat, bycatch species, and targeted fish populations are considered together within an ecosystem context. To this end, we convened the first workshop to develop an ecosystem approach to deep-sea fisheries and to ask whether deep-sea species could be fished sustainably. The workshop participants were able to integrate bycatch information into their framework but found it more difficult to integrate other ecosystem indicators such as habitat characteristics. (First two paragraphs from the Executive Summary

    synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells

    Get PDF
    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses

    Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes

    Get PDF
    Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Primary processes in sensory cells: current advances

    Get PDF

    Mausmutanten mit veränderten afferenten Synapsen der inneren Haarzellen als Tiermodelle der auditorischen Neuropathie

    No full text
    Die perisynaptische Audiopathie (auditorische Neuropathie) ist durch das Vorhandensein von otoakustischen Emissionen bei pathologischen auditorisch evozierten Potentialen gekennzeichnet. Die ursächlichen Pathomechanismen sind noch weitgehend unklar. Es könnte sich sowohl um Störungen des Hörvorganges im Bereich der inneren Haarzellen (IHZ), ihrer afferenten Synapsen oder des Hörnervs handeln . Die Charakterisierung der Pathomechanismen ist durch den Mangel an spezifischen audiologischen Tests, die zwischen Dysfunktionen an den genannten Strukturen unterscheiden könnten, limitiert. Wir untersuchen die Funktion der afferenten Synapse normaler und schwerhöriger Mäuse mit morphologischen sowie zell- und systemphysiologischen Methoden. Die zwei hier vorgestellten Tiermodelle, die Bassoon (synaptisches Protein) Mausmutante und die CaV1.3 (Ca2+ Kanal) Knockout-Maus, zeigen eine hochgradige Schwerhörigkeit bzw. Taubheit. In beiden Fällen liegt eine Dysfunktion der inneren Haarzelle und ihrer Synapsen vor, denen die synaptischen Bänder fehlen. Während in der CaV1.3 KO-Maus Depolarisationen wegen des fehlenden Ca2+-Einstroms auch bei langen Stimuli kaum Exozytose induzierten, beobachteten wir in den Bassoon-Mutanten nur einen selektiven Verlust der schnell freisetzbaren Vesikelpopulation (Readily Releasable Pool, RRP). Dieser Verlust des RRP führte zu einer pantonalen Anhebung der CAP-Schwelle um 50 dB
    corecore