31 research outputs found

    ∆Np63/p40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER+ and HER2+ breast cancers

    Get PDF
    ΔNp63, also known as p40, regulates stemness of normal mammary gland epithelium and provides stem cell characteristics in basal and HER2‐driven murine breast cancer models. Whilst ΔNp63/p40 is a characteristic feature of normal basal cells and basal‐type triple‐negative breast cancer, some receptor‐positive breast cancers express ΔNp63/p40 and its overexpression imparts cancer stem cell‐like properties in ER+ cell lines. However, the incidence of ER+ and HER2+ tumours that express ΔNp63/p40 is unclear and the phenotype of ΔNp63/p40+ cells in these tumours remains uncertain. Using immunohistochemistry with p63 isoform‐specific antibodies, we identified a ΔNp63/p40+ tumour cell subpopulation in 100 of 173 (58%) non‐triple negative breast cancers and the presence of this population associated with improved survival in patients with ER−/HER2+ tumours (p = 0.006). Furthermore, 41% of ER+/PR+ and/or HER2+ locally metastatic breast cancers expressed ΔNp63/p40, and these cells commonly accounted for <1% of the metastatic tumour cell population that localised to the tumour/stroma interface, exhibited an undifferentiated phenotype and were CD44+/ALDH−. In vitro studies revealed that MCF7 and T47D (ER+) and BT‐474 (HER2+) breast cancer cell lines similarly contained a small subpopulation of ΔNp63/p40+ cells that increased in mammospheres. In vivo, MCF7 xenografts contained ΔNp63/p40+ cells with a similar phenotype to primary ER+ cancers. Consistent with tumour samples, these cells also showed a distinct location at the tumour/stroma interface, suggesting a role for paracrine factors in the induction or maintenance of ΔNp63/p40. Thus, ΔNp63/p40 is commonly present in a small population of tumour cells with a distinct phenotype and location in ER+ and/or HER2+ human breast cancers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153532/1/cjp2149_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153532/2/cjp2149.pd

    Diagnostic utility of p63/P501S double sequential immunohistochemical staining in differentiating urothelial carcinoma from prostate carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Distinguishing urothelial carcinoma (UC) from prostate carcinoma (PC) is important due to potential therapeutic and prognostic implications. However, this can be a diagnostic challenge when there is limited tissue and in poorly differentiated tumors. We evaluated the diagnostic utility of a dual immunohistochemical stain comprising p63 and P501S (prostein), applied sequentially on a single slide and visualized by double chromogen reaction, in differentiating these two cancers. Thus far, there have been no previous studies assessing the diagnostic utility of p63 and P501S combined together as a dual immunostain in distinguishing between these two cancers.</p> <p>Methods</p> <p>p63/P501S dual-color sequential immunohistochemical staining was performed on archival material from 132 patients with high-grade UC and 23 patients with PC, and evaluated for p63 (brown nuclear) and P501S (red cytoplasmic) expression. Both the staining intensity and percentage of positive tumor cells were assessed.</p> <p>Results</p> <p>p63 was positive in 119/132 of UC and negative in PC. P501S was positive in 22/23 of PC and negative in UC. The p63+/P501S- immunoprofile had 90% sensitivity and 100% specificity for UC. The p63-/P501S+ immunoprofile had 96% sensitivity and 100% specificity for PC.</p> <p>Conclusion</p> <p>Our results indicate that double sequential immunohistochemical staining with p63 and P501S is highly specific and can be a useful tool in distinguishing UC from PC especially when there is limited diagnostic tissue as it can be performed on a single slide.</p

    A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage

    Get PDF
    ML, CD, IvL, GP, TM, SD, MS, APF, CT, DL, MAH, KL and SL: project grants from the Swedish Research Council, the Swedish Cancer Society and the Swedish Childhood Cancer Foundation. MHi and JC: Cancer Research UK (C8/A6613). MC, EP and WE: Wellcome Trust (073915). MN and BV: projects MEYS-NPS-LO1413 and GACR P206/12/G151. EMC, MP, MMS, ZF and PG: Norwegian Cancer Society (182735, 732200) and Helse Vest (911884, 911789). RB and SC: NIH (R01 CA95684), the Leukemia and Lymphoma Society and the Waxman Foundation. NW, AH, Ad’H: Cancer Research UK (C21383/A6950) and Engineering and Physical Sciences Research Council Doctoral Training Program. JL and YZ: Cancer Research UK (C240/A15751). MH and BW: SARomics Biostructures ABUY, KF: DDDP SciLife, Sweden. LJ, MHa, RS and A-LG: CBCS, Sweden. VP: SciLife fellowship. AT: Breast Cancer Research Scotland.The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.Publisher PDFPeer reviewe

    Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel

    Get PDF
    Currently, there are no effective biomarkers for ovarian cancer prognosis or prediction of therapeutic response. The objective of this study was to examine a panel of 10 serum biochemical parameters for their ability to predict response to chemotherapy, progression and survival of ovarian cancer patients. Sera from ovarian cancer patients were collected prior and during chemotherapy and were analysed by enzyme-linked immunosorbent assay for CA125, kallikreins 5, 6, 7, 8, 10 and 11, B7-H4, regenerating protein IV and Spondin-2. The odds ratio and hazard ratio and their 95% confidence interval (95% CI) were calculated. Time-dependent receiver-operating characteristic (ROC) curves were utilised to evaluate the prognostic performance of the biomarkers. The levels of several markers at baseline (c0), or after the first chemotherapy cycle (rc1), predicted chemotherapy response and overall or progression-free survival in univariate analysis. A multiparametric model (c0 of CA125, KLK5, KLK7 and rc1 of CA125) provided predictive accuracy with area under the ROC curve (AUC) of 0.82 (0.62 after correction for overfitting). Another marker combination (c0 of KLK7, KLK10, B7-H4, Spondin-2) was useful in predicting short-term (1-year) survival with an AUC of 0.89 (0.74 after correction for overfitting). All markers examined, except KLK7 and regenerating protein IV, were powerful predictors of time to progression (TTP) among chemotherapy responders. Individual and panels of biomarkers from the kallikrein family (and other families) can predict response to chemotherapy, overall survival, short-term (1-year) survival, progression-free survival and TTP of ovarian cancer patients treated with chemotherapy
    corecore