55 research outputs found

    Inhibitors of Protein Kinase Signaling Pathways Emerging Therapies for Cardiovascular Disease

    Get PDF
    Protein kinases are enzymes that covalently modify proteins by attaching phosphate groups (from ATP) to serine, threonine, and/or tyrosine residues. In so doing, the functional properties of the protein kinase’s substrates are modified. Protein kinases transduce signals from the cell membrane into the interior of the cell. Such signals include not only those arising from ligand-receptor interactions but also environmental perturbations such as when the membrane undergoes mechanical deformation (ie, cell stretch or shear stress). Ultimately, the activation of signaling pathways that use protein kinases often culminates in the reprogramming of gene expression through the direct regulation of transcription factors or through the regulation of mRNA stability or protein translation. Protein kinases regulate most aspects of normal cellular function. The pathophysiological dysfunction of protein kinase signaling pathways underlies the molecular basis of many cancers and of several manifestations of cardiovascular disease, such as hypertrophy and other types of left ventricular remodeling, ischemia/reperfusion injury, angiogenesis, and atherogenesis. Given their roles in such a wide variety of disease states, protein kinases are rapidly becoming extremely attractive targets for drug discovery, probably second only to heterotrimeric G protein-coupled receptors (eg, angiotensin II). Here, we will review the reasons for this explosion in interest in inhibitors of protein kinases and will describe the process of identifying novel drugs directed against kinases. We will specifically focus on disease states for which drug development has proceeded to the point of clinical or advanced preclinical studies

    An open toolkit for tracking open science partnership implementation and impact.

    Get PDF
    Serious concerns about the way research is organized collectively are increasingly being raised. They include the escalating costs of research and lower research productivity, low public trust in researchers to report the truth, lack of diversity, poor community engagement, ethical concerns over research practices, and irreproducibility. Open science (OS) collaborations comprise of a set of practices including open access publication, open data sharing and the absence of restrictive intellectual property rights with which institutions, firms, governments and communities are experimenting in order to overcome these concerns. We gathered two groups of international representatives from a large variety of stakeholders to construct a toolkit to guide and facilitate data collection about OS and non-OS collaborations. Ultimately, the toolkit will be used to assess and study the impact of OS collaborations on research and innovation. The toolkit contains the following four elements: 1) an annual report form of quantitative data to be completed by OS partnership administrators; 2) a series of semi-structured interview guides of stakeholders; 3) a survey form of participants in OS collaborations; and 4) a set of other quantitative measures best collected by other organizations, such as research foundations and governmental or intergovernmental agencies. We opened our toolkit to community comment and input. We present the resulting toolkit for use by government and philanthropic grantors, institutions, researchers and community organizations with the aim of measuring the implementation and impact of OS partnership across these organizations. We invite these and other stakeholders to not only measure, but to share the resulting data so that social scientists and policy makers can analyse the data across projects

    Phosphorylation of Serine Residues 3, 6, 10, and 13 Distinguishes Membrane Anchored from Soluble Glutamic Acid Decarboxylase 65 and Is Restricted to Glutamic Acid Decarboxylase 65

    No full text
    GAD65, the smaller isoform of the Îł-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase is detected as an α/ÎČ doublet of distinct mobility on SDS-polyacrylamide gel electrophoresis. Glutamic acid decarboxylase (GAD) 65 is reversibly anchored to the membrane of synaptic vesicles in neurons and synaptic-like microvesicles in pancreatic ÎČ-cells. Here we demonstrate that GAD65α but not ÎČ is phosphorylated in vivo and in vitro in several cell types. Phosphorylation is not the cause of the α/ÎČ heterogeneity but represents a unique post-translational modification of GAD65α. Two-dimensional protein analyses identified five phosphorylated species of three different charges, which are likely to represent mono-, di-, and triphosphorylated GAD65α in different combinations of phosphorylated serines. Phosphorylation of GAD65α was located at serine residues 3, 6, 10, and 13, shown to be mediated by a membrane bound kinase, and distinguish the membrane anchored, and soluble forms of the enzyme. Phosphorylation status does not affect membrane anchoring of GAD65, nor its Km or Vmax for glutamate. The results are consistent with a model in which GAD65α and -ÎČ constitute the two subunits of the native GAD65 dimer, only one of which, α, undergoes phosphorylation following membrane anchoring, perhaps to regulate specific aspects of GAD65 function in the synaptic vesicle membrane

    Are we moving the dial? Canadian health research funding trends for women’s health, 2S/LGBTQ + health, sex, or gender considerations

    No full text
    Background: Sex and gender impacts health outcomes and disease risk throughout life. The health of women and members of the Two-Spirit, Lesbian, Gay, Bisexual, Transgender, Queer or Questioning (2S/LGBTQ +) community is often compromised as they experience delays in diagnosis. Distinct knowledge gaps in the health of these populations have prompted funding agencies to mandate incorporation of sex and gender into research. Sex- and gender-informed research perspectives and methodology increases rigor, promotes discovery, and expands the relevance of health research. Thus, the Canadian Institutes of Health Research (CIHR) implemented a sex and gender-based analysis (SGBA) framework recommending the inclusion of SGBA in project proposals in 2010 and then mandating the incorporation of SGBA into grant proposals in 2019. To examine whether this mandate resulted in increased mention of sex or gender in funded research abstracts, we searched the publicly available database of grant abstracts funded by CIHR to analyze the percentage of abstracts that mentioned sex or gender of the population to be studied in the funded research. To better understand broader health equity issues we also examined whether the funded grant abstracts mentioned either female-specific health research or research within the 2S/LGBTQ + community. Results: We categorized a total of 8,964 Project and Operating grant abstracts awarded from 2009 to 2020 based on their study of female-specific or a 2S/LGBTQ + populations or their mention of sex or gender. Overall, under 3% of grant abstracts funded by CIHR explicitly mentioned sex and/or gender, as 1.94% of grant abstracts mentioned sex, and 0.66% mentioned gender. As one of the goals of SGBA is to inform on health equity and understudied populations with respect to SGBA, we also found that 5.92% of grant abstracts mentioned female-specific outcomes, and 0.35% of grant abstracts focused on the 2S/LGBTQ + community. Conclusions: Although there was an increased number of funded grants with abstracts that mentioned sex and 2S/LGBTQ + health across time, these increases were less than 2% between 2009 and 2020. The percentage of funded grants with abstracts mentioning female-specific health or gender differences did not change significantly over time. The percentage of funding dollars allocated to grants in which the abstracts mentioned sex or gender also did not change substantially from 2009 to 2020, with grant abstracts mentioning sex or female-specific research increasing by 1.26% and 3.47%, respectively, funding allocated to research mentioning gender decreasing by 0.49% and no change for 2S/LGBTQ +-specific health. Our findings suggest more work needs to be done to ensure the public can evaluate what populations will be examined with the funded research with respect to sex and gender to advance awareness and health equity in research.Arts, Faculty ofHealth and Social Development, Faculty of (Okanagan)Medicine, Faculty ofNon UBCHealth and Exercise Sciences, School of (Okanagan)Psychology, Department ofReviewedFacultyResearcherGraduateOthe

    Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus.

    No full text
    The smaller form of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD65) is a major autoantigen in two human diseases that affect its principal sites of expression. Thus, destruction of pancreatic beta cells, which results in insulin-dependent diabetes mellitus (IDDM), and impairment of GABA-ergic synaptic transmission in Stiff-Man syndrome (SMS) are both characterized by circulating autoantibodies to GAD65. Anti-GAD65 autoantibodies in IDDM are predominantly directed to conformational epitopes. Here we report the characterization of humoral autoimmune responses to GAD65 in 35 SMS patients, of whom 13 (37%) also had IDDM. All SMS patients immunoprecipitated native GAD65 and the main titers were orders of magnitude higher than in IDDM patients. Furthermore, in contrast to the situation in IDDM, autoantibodies in 35 of 35 (100%) of SMS patients recognized denatured GAD65 on Western blots. Two major patterns of epitope specificity were identified on Western blots. The first pattern, detected in 25 of 35 SMS patients (71%), of whom 11 had IDDM (44%), was predominantly reactive with a linear NH2-terminal epitope residing in the first eight amino acids of GAD65. Nine of nine individuals who were HLA-haplotyped in this group carried an IDDM susceptibility haplotype and HLA-DR3, DQw2 was particularly abundant. The second pattern, detected in 10 of 35 patients (29%) of whom two had IDDM (20%), included reactivity with the NH2-terminal epitope plus strong reactivity with one or more additional epitope(s) residing COOH-terminal to amino acid 101. The second epitope pattern may represent epitope spreading in the GAD65 molecule, but may also include some cases of epitope recognition associated with IDDM resistant HLA-haplotypes. The principal NH2-terminal linear epitope in GAD65 distinguishes the reactivity of SMS and IDDM autoantibodies and may be a determinant of pathogenicity for GABA-ergic neurons. The greater magnitude and distinct specificity of the humoral response to GAD65 in SMS may reflect a biased involvement of the T helper cell type 2 (Th2) subset of CD4+ T cells and antibody responses, whereas IDDM is likely mediated by the Th1 subset of CD4+ T cells and cytotoxic T cell responses
    • 

    corecore