791 research outputs found

    Upper Bounds for the Critical Car Densities in Traffic Flow Problems

    Full text link
    In most models of traffic flow, the car density pp is the only free parameter in determining the average car velocity ⟨v⟩\langle v \rangle. The critical car density pcp_c, which is defined to be the car density separating the jamming phase (with ⟨v⟩=0\langle v \rangle = 0) and the moving phase (with ⟨v⟩>0\langle v \rangle > 0), is an important physical quantity to investigate. By means of simple statistical argument, we show that pc<1p_c < 1 for the Biham-Middleton-Levine model of traffic flow in two or higher spatial dimensions. In particular, we show that pc≤11/12p_{c} \leq 11/12 in 2 dimension and pc≤1−(D−12D)Dp_{c} \leq 1 - \left( \frac{D-1}{2D} \right)^D in DD (D>2D > 2) dimensions.Comment: REVTEX 3.0, 5 pages with 1 figure appended at the back, Minor revision, to be published in the Sept issue of J.Phys.Soc.Japa

    Two Lane Traffic Simulations using Cellular Automata

    Full text link
    We examine a simple two lane cellular automaton based upon the single lane CA introduced by Nagel and Schreckenberg. We point out important parameters defining the shape of the fundamental diagram. Moreover we investigate the importance of stochastic elements with respect to real life traffic.Comment: to be published in Physica A, 19 pages, 9 out of 13 postscript figures, 24kB in format .tar.gz., 33kB in format .tar.gz.uu, for a full version including all figures see http://studguppy.tsasa.lanl.gov/research_team/papers

    Towards a variational principle for motivated vehicle motion

    Full text link
    We deal with the problem of deriving the microscopic equations governing the individual car motion based on the assumptions about the strategy of driver behavior. We suppose the driver behavior to be a result of a certain compromise between the will to move at a speed that is comfortable for him under the surrounding external conditions, comprising the physical state of the road, the weather conditions, etc., and the necessity to keep a safe headway distance between the cars in front of him. Such a strategy implies that a driver can compare the possible ways of his further motion and so choose the best one. To describe the driver preferences we introduce the priority functional whose extremals specify the driver choice. For simplicity we consider a single-lane road. In this case solving the corresponding equations for the extremals we find the relationship between the current acceleration, velocity and position of the car. As a special case we get a certain generalization of the optimal velocity model similar to the "intelligent driver model" proposed by Treiber and Helbing.Comment: 6 pages, RevTeX

    Deadlocks and waiting times in traffic jam

    Get PDF
    In a city of right moving and upmoving cars with hardcore constraint, traffic jam occurs in the form of bands. We show how the bands are destroyed by a small number of strictly left moving cars yielding a deadlock phase with a rough edge of left cars. We also show that the probability of waiting time at a signal for a particular tagged car has a power law dependence on time, indicating the absence of any characteristic time scale for an emergent traffic jam. The exponent is same for both the band and the deadlock cases. The significances of these results are discussed.Comment: 8 pages including 4 eps figures, one in colour, uses revtex to appear in Physica

    Complex Dynamics of Bus, Tram and Elevator Delays in Transportation System

    Full text link
    It is necessary and important to operate buses and trams on time. The bus schedule is closely related to the dynamic motion of buses. In this part, we introduce the nonlinear maps for describing the dynamics of shuttle buses in the transportation system. The complex motion of the buses is explained by the nonlinear-map models. The transportation system of shuttle buses without passing is similar to that of the trams. The transport of elevators is also similar to that of shuttle buses with freely passing. The complex dynamics of a single bus is described in terms of the piecewise map, the delayed map, the extended circle map and the combined map. The dynamics of a few buses is described by the model of freely passing buses, the model of no passing buses, and the model of increase or decrease of buses. The nonlinear-map models are useful to make an accurate estimate of the arrival time in the bus transportation

    Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries

    Full text link
    By the use of computer simulations we investigate, in the cellular automaton of two-dimensional traffic flow, the anisotropic effect of the probabilities of the change of the move directions of cars, from up to right (purp_{ur}) and from right to up (prup_{ru}), on the dynamical jamming transition and velocities under the periodic boundary conditions in one hand and the phase diagram under the open boundary conditions in the other hand. However, in the former case, the first order jamming transition disappears when the cars alter their directions of move (pur≠0p_{ur}\neq 0 and/or pru≠0p_{ru}\neq 0). In the open boundary conditions, it is found that the first order line transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving phase region expand as well as the contraction of the jamming phase one. Moreover, in the isotropic case, and when each car changes its direction of move every time steps (pru=pur=1p_{ru}=p_{ur}=1), the transition from the jamming phase (or moving phase) to the maximal current one is of first order. Furthermore, the density profile decays, in the maximal current phase, with an exponent γ≈1/4\gamma \approx {1/4}.}Comment: 13 pages, 22 figure

    Dynamical Phase Transition in One Dimensional Traffic Flow Model with Blockage

    Full text link
    Effects of a bottleneck in a linear trafficway is investigated using a simple cellular automaton model. Introducing a blockage site which transmit cars at some transmission probability into the rule-184 cellular automaton, we observe three different phases with increasing car concentration: Besides the free phase and the jam phase, which exist already in the pure rule-184 model, the mixed phase of these two appears at intermediate concentration with well-defined phase boundaries. This mixed phase, where cars pile up behind the blockage to form a jam region, is characterized by a constant flow. In the thermodynamic limit, we obtain the exact expressions for several characteristic quantities in terms of the car density and the transmission rate. These quantities depend strongly on the system size at the phase boundaries; We analyse these finite size effects based on the finite-size scaling.Comment: 14 pages, LaTeX 13 postscript figures available upon request,OUCMT-94-

    Experiences with a simplified microsimulation for the Dallas/Fort Worth area

    Full text link
    We describe a simple framework for micro simulation of city traffic. A medium sized excerpt of Dallas was used to examine different levels of simulation fidelity of a cellular automaton method for the traffic flow simulation and a simple intersection model. We point out problems arising with the granular structure of the underlying rules of motion.Comment: accepted by Int.J.Mod.Phys.C, 20 pages, 14 figure

    The Effect Of Delay Times On The Optimal Velocity Traffic Flow Behavior

    Full text link
    We have numerically investigated the effect of the delay times Ï„f\tau_f and Ï„s\tau_s of a mixture of fast and slow vehicles on the fundamental diagram of the optimal velocity model. The optimal velocity function of the fast cars depends not only on the headway of each car but also on the headway of the immediately preceding one. It is found that the small delay times have almost no effects, while, for sufficiently large delay time Ï„s\tau_s the current profile displays qualitatively five different forms depending on Ï„f\tau_f, Ï„s\tau_s and the fractions dfd_f and dsd_s of the fast and slow cars respectively. The velocity (current) exhibits first order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to the jamming one respectively accompanied by the existence of a local minimal current. Furthermore, there exist a critical value of Ï„f\tau_f above which the metastability and hysteresis appear. The spatial-temporal traffic patterns present more complex structur

    A Cellular Automaton Model for Bi-Directionnal Traffic

    Full text link
    We investigate a cellular automaton (CA) model of traffic on a bi-directional two-lane road. Our model is an extension of the one-lane CA model of {Nagel and Schreckenberg 1992}, modified to account for interactions mediated by passing, and for a distribution of vehicle speeds. We chose values for the various parameters to approximate the behavior of real traffic. The density-flow diagram for the bi-directional model is compared to that of a one-lane model, showing the interaction of the two lanes. Results were also compared to experimental data, showing close agreement. This model helps bridge the gap between simplified cellular automata models and the complexity of real-world traffic.Comment: 4 pages 6 figures. Accepted Phys Rev
    • …
    corecore