27 research outputs found

    Long-Range Chromosome Organization in E. coli: A Site-Specific System Isolates the Ter Macrodomain

    Get PDF
    The organization of the Escherichia coli chromosome into a ring composed of four macrodomains and two less-structured regions influences the segregation of sister chromatids and the mobility of chromosomal DNA. The structuring of the terminus region (Ter) into a macrodomain relies on the interaction of the protein MatP with a 13-bp target called matS repeated 23 times in the 800-kb-long domain. Here, by using a new method that allows the transposition of any chromosomal segment at a defined position on the genetic map, we reveal a site-specific system that restricts to the Ter region a constraining process that reduces DNA mobility and delays loci segregation. Remarkably, the constraining process is regulated during the cell cycle and occurs only when the Ter MD is associated with the division machinery at mid-cell. The change of DNA properties does not rely on the presence of a trans-acting mechanism but rather involves a cis-effect acting at a long distance from the Ter region. Two specific 12-bp sequences located in the flanking Left and Right macrodomains and a newly identified protein designated YfbV conserved with MatP through evolution are required to impede the spreading of the constraining process to the rest of the chromosome. Our results unravel a site-specific system required to restrict to the Ter region the consequences of anchoring the Ter MD to the division machinery

    The unstructured C-terminus of the τ subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit

    Get PDF
    The τ subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the α subunit through its C-terminal Domain V, τC16. We show that the extreme C-terminal region of τC16 constitutes the site of interaction with α. The τC16 domain, but not a derivative of it with a C-terminal deletion of seven residues (τC16Δ7), forms an isolable complex with α. Surface plasmon resonance measurements were used to determine the dissociation constant (KD) of the α−τC16 complex to be ∼260 pM. Competition with immobilized τC16 by τC16 derivatives for binding to α gave values of KD of 7 μM for the α−τC16Δ7 complex. Low-level expression of the genes encoding τC16 and τC16▵7, but not τC16Δ11, is lethal to E. coli. Suppression of this lethal phenotype enabled selection of mutations in the 3′ end of the τC16 gene, that led to defects in α binding. The data suggest that the unstructured C-terminus of τ becomes folded into a helix–loop–helix in its complex with α. An N-terminally extended construct, τC24, was found to bind DNA in a salt-sensitive manner while no binding was observed for τC16, suggesting that the processivity switch of the replisome functionally involves Domain IV of τ

    Dynamics of Genome Rearrangement in Bacterial Populations

    Get PDF
    Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes

    A Structural Requirement for Activation of Skeletal Ryanodine Receptors by Peptides of the Dihydropyridine Receptor II-III Loop

    No full text
    The solution structures of three related peptides (A1, A2, and A9) corresponding to the Thr671-Leu690 region of the skeletal muscle dihydropyridine receptor II-III loop have been investigated using nuclear magnetic resonance spectroscopy. Peptide A1, th

    A Molecular Mousetrap Determines Polarity of Termination of DNA Replication in E. coli

    No full text
    During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression. In contrast, strand separation extending to and including the strictly conserved G-C(6) base pair at the nonpermissive end led to formation of a stable locked complex. Lock formation specifically requires the cytosine residue, C(6). The crystal structure of the locked complex showed that C(6) moves 14 Å from its normal position to bind in a cytosine-specific pocket on the surface of Tus

    Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.)

    No full text
    The sequence of Gid1 (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthologue from barley. This was expressed in E. coli, and produced a protein that was able to bind GA in vitro with both structural specificity and saturability. Its potential role in GA responses was investigated using barley mutants with reduced GA sensitivity (gse1 mutants). Sixteen different gse1 mutants each carried a unique nucleotide substitution in this sequence. In all but one case, these changes resulted in single amino acid substitutions, and, for the remaining mutant, a substitution in the 5 untranslated region of the mRNA is proposed to interfere with translation initiation. There was perfect linkage in segregating populations between new mutant alleles and the gse1 phenotype, leading to the conclusion that the putative GID1 GA receptor sequence in barley corresponds to the Gse1 locus. Determination of endogenous GA contents in one of the mutants revealed enhanced accumulation of bioactive GA1, and a deficit of C20 GA precursors. All of the gse1 mutants had reduced sensitivity to exogenous GA3, and to AC94377 (a GA analogue) at concentrations that are normally saturating, but, at much higher concentrations, there was often a considerable response. The comparison between barley and rice mutants reveals interesting differences between these two cereal species in GA hormonal physiology

    One-way traffic control in replication termination

    No full text

    Ultrasensitive detection of antibodies using a new Tus-Ter-lock immunoPCR system

    Get PDF
    A system consisting of a protein LG coated surface for the capture of mammalian antibodies (target), and an antigen fused to Tus and stoichiometrically linked to a DNA template via the Tus-Ter-lock sequence allowed the ultrasensitive detection of 5.5 attomol of target by real-time immunoPCR in complex media
    corecore