89 research outputs found
Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex
Background and Aims Apomictic plants maintain functional pollen, and via pollination the genetic factors controlling apomixis can be potentially transferred to congeneric sexual populations. In contrast, the sexual
individuals do not fertilize apomictic plants which produce seeds without fertilization of the egg cells. This unidirectional introgressive hybridization is expected finally to replace sexuality by apomixis and is thought to
be a causal factor for the wide geographical distribution of apomictic complexes. Nevertheless, this process may be inhibited by induced selfing (mentor effects) of otherwise self-incompatible sexual individuals. Here
whether mentor effects or actual cross-fertilization takes place between diploid sexual and polyploid apomictic cytotypes in the Ranunculus auricomus complex was tested via experimental crosses.
¿ Methods Diploid sexual mother plants were pollinated with tetra- and hexaploid apomictic pollen donators by hand, and the amount of well-developed seed compared with aborted seed was evaluated. The reproductive pathways were assessed in the well-developed seed via flow cytometric seed screen (FCSS).
¿ Key Results The majority of seed was aborted; the well-developed seeds have resulted from both mentor effects and cross-fertilization at very low frequencies (1.3 and 1.6% of achenes, respectively). Pollination by 4x apomictic pollen plants results more frequently in cross-fertilization, whereas pollen from 6x plants more frequently induced mentor effects.
¿Conclusions It is concluded that introgression of apomixis into sexual populations is limited by ploidy barriers in the R. auricomus complex, and to a minor extent by mentor effects. In mixed populations, sexuality cannot be replaced by apomixis because the higher fertility of sexual populations still compensates the low frequencies of potential introgression of apomixi
Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists
Background: Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants.
Methodology/Principal Findings: We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds.
Conclusions/Significance: Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with the corresponding selection regimes was maintained during the 5-year experimental period
Endosperm triploidy has a selective advantage during ongoing parental conflict by imprinting.
The endosperm of the flowering plant mediates the supply of maternal resources for embryogenesis. An endosperm formed in sexual reproduction between diploid parents is typically triploid, with a 2 : 1 ratio of maternal genetic material (denoted as 2m : 1p). Variation from this ratio affects endosperm size, indicating parent-specific expression of genes involved in endosperm growth and development. The presence of paternally or maternally imprinted genes can be explained by parental conflict over the transfer of nutrients from maternal to offspring tissue. Genomic imprinting can, for example, provide the male parent of an embryo in a mixed-paternity seed pod, with an opportunity for expressing its preference for a disproportionate allocation of resources to its embryo. It has been argued that a diploid 1m : 1p endosperm was ancestral and the 2m : 1p endosperm evolved after parental conflict, to improve maternal control over seed provisioning. We present a population genetic model, which instead places the origin of triploidy early in the parental conflict over resource allocation. We find that there is an advantage to having a triploid endosperm as the parental conflict continues. This advantage can help to explain why the 2m : 1p endosperm prevails among flowering plants
Dynamic coexistence of sexual and asexual invasion fronts in a system of integro-difference equations
The role of long-range dispersal in the coexistence of sexual and asexual relatives in a population of hermaphrodite flowering plants is investigated. In these populations, growth and reproduction often occur during a sedentary stage that is then followed by dispersal of propagules. These two stages are clearly distinguishable and show strong seasonality. A modeling approach that accurately describes this kind of dynamics of mixed populations is a system of two nonlinear integro-difference equations. It is shown that this kind of model can accommodate coexistence of the two different reproductive types
- …