12 research outputs found

    Application of reflectance parameters in the estimation of the structural order of coals and carbonaceous materials. Precision and bias of measurements derived from the ICCP structural working group

    Get PDF
    Optical reflectance of vitrinite is one of the fundamental physical properties that have been used for the study of coal and carbonaceous materials. Organic matter in coals and carbonaceous matter consists mainly of aromatic lamellae, whose dimensions and spatial orientation define its internal structure. Various reflectance parameters describe well the average degree of order of the molecular structure of organic matter. Moreover, reflectance parameters are numerical values which characterize the samples unambiguously, facilitating the comparison of the optical properties of different carbonaceous materials as well as comparison between optical parameters and other physical or chemical factors. The focus of this study is the evaluation of the precision and bias of reflectance measurements (R and R) performed by various analysts in different laboratories in order to check the applicability of reflectance parameters to the estimation of the structural order of coals and carbonaceous materials. Additionally, it was desirable to compare reflectance parameters with other parameters obtained by different analytical methods able to provide structural information. The consistency and repeatability of the reflectance measurements obtained by different participants turned out to enable the drawing of similar conclusions regarding the structural transformation of anthracite during heating. Good correlations were found between the reflectance parameters studied and structural factors obtained by comparative methods. The reflectance parameters examined proved to be very sensitive to any changes of the structural order of coals and carbonaceous materials and seem to be a perfect complement to structural studies made by X-ray diffraction or Raman spectroscopy

    Development of a petrographic classification of fly-ash components from coal combustion and co-combustion. (An ICCP Classification System, Fly-Ash Working Group – Commission III.)

    Get PDF
    A new system for the microscopic classification of fly-ash components has been developed by the Fly-Ash Working Group, Commission III of the ICCP and is presented herein. The studied fly-ashes were obtained from the combustion of single coals of varied rank, coal blends, and coals blended with other fuels (biomass, petroleum coke), in different operating conditions and by means of different technologies. Microscopic images of the fly-ash samples were used to test the optical criteria proposed for classifying the fly-ash components. The classification system developed is based on a small number of microscopic criteria, subdivided into six independent levels or categories, three of which are directed at whole particle identification on the basis of nature, origin and type of fly-ash particle, while the other three levels are directed at the smaller section identification on the basis of character, structure and optical texture of unburned carbons. To classify the inorganic components of the fly-ash, the criterion proposed is composition in terms of metallic/non-metallic character. To establish the classification criteria the petrographers involved in the work performed three successive round robins. Evaluation of the results by using firstly descriptive statistics and then the criteria and parameters employed by the ICCP in their accreditation programs indicated that the classification of the fly-ash components was accurate and that there was only a minor bias. The main conclusion of this study was that the proposed criteria are valuable for identifying, and classifying fly-ash components and for describing the optical properties of fly-ash particles

    Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the microscopy of Carbon Materials Working Group of the ICCP

    Get PDF
    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the "raw agreement indices". It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009-2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%

    Development of a petrographic technique to assess the spontaneous combustion susceptibility of Indian coals

    Get PDF
    Petrographic studies are commonly used categorise the potential utilisation of coals. Eleven coal samples from the jharia coalfield (JCF), india, were studied using petrographic techniques to investigate maceral content, reflectance, and textural characteristics. Multiple test samples of each coal were slowly oxidised under controlled laboratory conditions from an ambient temperature of 30°c to 300°c to investigate the morphology of oxidised coals. The petrographic characterisation of the coals before and after oxidation showed important changes in both morphology and vitrinite reflectance. The oxidation of the coal particles produced three predominant textural changes: particles with homogeneous change of reflectance (HCv), particles with oxidation rims (ORv), and particles with no changes were observed (Uv) respectively. These textural characteristics were used to indicate how particles had interacted with oxygen at low temperatures during the early stages of oxidation. The morphological classification developed provides an alternative method to confirm the susceptibility of a coal to spontaneous combustion. Conventional thermal parameters such as crossing point temperature (CPT) were unable to identify the coals prone to spontaneous combustion. However, certain petrographic parameters could be combined with CPT values to provide a much more accurate measure for susceptibility to spontaneous combustion

    Classification of liptinite – ICCP System 1994

    Get PDF
    The liptinite maceral group has been revised by ICCP in accordance with the ICCP System 1994. After the revision of the classifications of vitrinite (ICCP, 1998), inertinite, (ICCP, 2001) and huminite (Sykorova et al., 2005) this liptinite classification completes the revised ICCP maceral group classifications. These classifications are collectively referred to as the “ICCP System 1994”. In contrast to the previous ICCP Stopes Heerlen (ICCP, 1963, 1971, 1975, 1993) this new classification system is applicable to coal of all ranks and dispersed organic matter. The classification as presented here was accepted in the ICCP Plenary Session on September 11, 2015 at the ICCP Meeting in Potsdam. The decision to publish this classification in the recent form was accepted at the ICCP Plenary Session on September 23, 2016 in Houston

    Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group – Commission III)

    No full text
    Self-heating of coal waste is a major problem in the leading coal-producing and consuming countries, independent of the recent or past coal exploitation history. The phenomenon of self-heating is dependent on many factors such as the properties of organic matter (maceral composition and rank), moisture and pyrite content, climate effects, and storage conditions (shape of the dump or compaction of the coal waste). Once deposited, coal waste undergoes oxidation, which can lead to self-heating with the overall temperatures exceeding 1000 °C. During these self-heating processes, both organic and mineral matter undergo oxidative and thermal alterations, being influenced, among others, by the rate of heating as well as by the access of air and moisture. The morphological features of organic matter in coal waste at microscopic scale reflect the thermal conditions within the waste dump. Since 2008, several exercises designed to establish a petrographic classification system of oxidatively- and thermally-altered morphological forms of organic particles present in self-heated coal waste dumps have been carried out within the Self-heating of Coal and Coal Waste Working Group (Self-Heating WG), in Commission III of the International Committee for Coal and Organic Petrology (ICCP). Based on the degree of oxidative and thermal alteration, all assessed organic particles were divided into unaltered particles (huminite, vitrinite, liptinite, and inertinite macerals), altered particles, and newly formed particles (pyrolytic carbon, bitumen, chars, graphite, and coke). Altered particles were further divided according to their optical properties (porous, massive; isotropic, anisotropic). For altered particles the following specific features were distinguished: fractures, fissures, cracks; brighter rims; darker rims; plasticised edges; bands; devolatilisation pores; paler in colour particles. The final petrographic classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps was established as a result of the successively performed Round Robin Exercises 2008–2017. The selected criteria and categories proved the high performance of the analysts characterised by a minor bias. The proposed petrographic classification system based on petrographic methods represents a useful way to characterize the undesirable phenomena occurring in coal waste dumps. Microscopic analyses and application of the petrographic classification system for organic particles affected by self-heating in coal waste offers the identification, documentation and monitoring of coal waste oxidation, self-ignition and combustion processes. It also enables a selection and application of appropriate measures to delay or even prevent undesired environmental impacts. The established classification system may assist in the air quality monitoring and assessment of burning waste dump sites and, thus, provide a relevant support in the environmental management of the disposal sites related to coal mining. The classification system can provide an important instrument for environmental protection agencies to increase the effectiveness of measures applied in fire hazard combating. The proposed classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps can be applied on self-heating coal waste or mining dumps research, being a useful tool for coal waste managements performed by environmental agencies responsible for the landfill managements and monitoring of waste dumps.The samples used for preparation of the Round Robin Exercises within the Self-heating Working Group of the ICCP were obtained within the framework of the grants 2011/03/B/ST10/06331 and N307 016 32/0493 acquired by Magdalena Misz-Kennan from the National Center of Science, Poland. The research work conducted by Jolanta Kus within the Self-heating Working Group of the ICCP was supported and is published with the permission of the Federal Institute for Geosciences and Natural Resources, Hannover, Germany

    Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group - Commission III)

    No full text
    Self-heating of coal waste is a major problem in the leading coal-producing and consuming countries, independent of the recent or past coal exploitation history. The phenomenon of self-heating is dependent on many factors such as the properties of organic matter (maceral composition and rank), moisture and pyrite content, climate effects, and storage conditions (shape of the dump or compaction of the coal waste). Once deposited, coal waste undergoes oxidation, which can lead to self-heating with the overall temperatures exceeding 1000 degrees C. During these self-heating processes, both organic and mineral matter undergo oxidative and thermal alterations, being influenced, among others, by the rate of heating as well as by the access of air and moisture. The morphological features of organic matter in coal waste at microscopic scale reflect the thermal conditions within the waste dump. Since 2008, several exercises designed to establish a petrographic classification system of oxidatively- and thermally-altered morphological forms of organic particles present in self-heated coal waste dumps have been carried out within the Self-heating of Coal and Coal Waste Working Group (Self-Heating WG), in Commission III of the International Committee for Coal and Organic Petrology (ICCP). Based on the degree of oxidative and thermal alteration, all assessed organic particles were divided into unaltered particles (huminite, vitrinite, liptinite, and inertinite macerals), altered particles, and newly formed particles (pyrolytic carbon, bitumen, chars, graphite, and coke). Altered particles were further divided according to their optical properties (porous, massive; isotropic, anisotropic). For altered particles the following specific features were distinguished: fractures, fissures, cracks; brighter rims; darker rims; plasticised edges; bands; devolatilisation pores; paler in colour particles. The final petrographic classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps was established as a result of the successively performed Round Robin Exercises 2008-2017. The selected criteria and categories proved the high performance of the analysts characterised by a minor bias. The proposed petrographic classification system based on petrographic methods represents a useful way to characterize the undesirable phenomena occurring in coal waste dumps. Microscopic analyses and application of the petrographic classification system for organic particles affected by self-heating in coal waste offers the identification, documentation and monitoring of coal waste oxidation, self-ignition and combustion processes. It also enables a selection and application of appropriate measures to delay or even prevent undesired environmental impacts. The established classification system may assist in the air quality monitoring and assessment of burning waste dump sites and, thus, provide a relevant support in the environmental management of the disposal sites related to coal mining. The classification system can provide an important instrument for environmental protection agencies to increase the effectiveness of measures applied in fire hazard combating. The proposed classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps can be applied on self-heating coal waste or mining dumps research, being a useful tool for coal waste managements performed by environmental agencies responsible for the landfill managements and monitoring of waste dumps
    corecore