653 research outputs found
Hamster leukemia virus: lack of endogenous DNA synthesis and unique structure of its DNA polymerase
Infectious hamster leukemia virus (HaLV) contains a DNA polymerase different from those of murine and avian viruses. No endogenous reaction directed by the 60 to 70S RNA of HaLV could be demonstrated in detergenttreated HaLV virions, nor could the purified DNA polymerase copy added viral RNA. The virion RNA could, however, act as template for added avian myeloblastosis virus DNA polymerase and the HaLV DNA polymerase could efficiently utilize homopolymers as templates. The HaLV enzyme was like other reverse transcriptases in that certain ribohomopolymers were much better templates than the homologous deoxyribohomopolymers. No ribonuclease H activity could be shown in the HaLV enzyme, but neither could activity be found in the murine leukemia virus DNA polymerase. The hamster enzyme was unique in that poly(A) ·oligo(dT) was a poor template, and globin mRNA primed with oligo(dT) was totally inactive as a template. Its uniqueness was also indicated by its subunit composition; electrophoresis of the HaLV DNA polymerase in sodium dodecyl sulfate-containing polyacrylamide gels revealed equimolar amounts of two polypeptides of molecular weight 68,000 and 53,000. The sedimentation rate of the enzyme in glycerol gradients was consistent with a structure containing one each of the two polypeptides. The enzyme thus appears to be structurally distinct from other known virion DNA polymerases. Its inability to carry out an endogenous reaction in vitro might result from an inability to utilize certain primers
Inhibitors of cell cycle checkpoints and DNA replication cause different responses in normal versus malignant urothelial cells
S-phase checkpoints are triggered in tumor cells in response to DNA replication stress caused by the tumor microenvironment or oncogenes. A recent report from our laboratory showed that tumor cells and more normal epithelial cells have a very different response to replication stress. In this Author's View, the implications of this finding are discussed
Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression
The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders. © 2014, Springer Science+Business Media New York
Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression
The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders. © 2014, Springer Science+Business Media New York
Recommended from our members
Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
Variations in multiple sclerosis practice within Europe - Is it time for a new treatment guideline?
In the past 5 years, the combination of developments in diagnostic strategy and approval of new disease-modifying therapies has provided an opportunity to achieve dramatic improvements in patient outcomes in multiple sclerosis (MS). However, across Europe there are several factors that may prevent patients from receiving the best therapy at the appropriate time, and there is variation among countries in terms of which of these factors are most relevant. Here, we review current MS clinical practices in a number of countries in the European Union to identify differences regarding initiation of treatment in patients with clinically isolated syndrome or relapsing-remitting MS, and differences in the timing of treatment switch or escalation. While recognizing that policy is not static in any country, we believe that patients' interests would be better served if a European treatment guideline was developed. Such a guideline could both inform and be informed by national policies, facilitating the dissemination of best clinical practice internationally.info:eu-repo/semantics/publishedVersio
HDAC inhibitor confers radiosensitivity to prostate stem-like cells
Background: Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction.
Methods: Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser.
Results: Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation.
Interpretation: Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction
- …
