115 research outputs found

    We only die once... but from how many causes?

    Get PDF
    Analysing causes of death provides a betterunderstanding of long-term mortality trends. InFrance, the death certificates completed by physiciansgenerally mention several causes of death (2.4 onaverage in 2011). As a general rule, just one of them,the so-called underlying cause, is taken into account.As a result, the contribution of certain diseases-endocrine diseases for example-to mortality isseverely underestimated. In a context of rising lifeexpectancy where people increasingly die not from asingle cause of death but from several, it is importantto also take these contributing causes into account

    The use and reporting of airline passenger data for infectious disease modelling:a systematic review

    Get PDF
    Background A variety of airline passenger data sources are used for modelling the international spread of infectious diseases. Questions exist regarding the suitability and validity of these sources. Aim We conducted a systematic review to identify the sources of airline passenger data used for these purposes and to assess validation of the data and reproducibility of the methodology. Methods Articles matching our search criteria and describing a model of the international spread of human infectious disease, parameterised with airline passenger data, were identified. Information regarding type and source of airline passenger data used was collated and the studies’ reproducibility assessed. Results We identified 136 articles. The majority (n = 96) sourced data primarily used by the airline industry. Governmental data sources were used in 30 studies and data published by individual airports in four studies. Validation of passenger data was conducted in only seven studies. No study was found to be fully reproducible, although eight were partially reproducible. Limitations By limiting the articles to international spread, articles focussed on within-country transmission even if they used relevant data sources were excluded. Authors were not contacted to clarify their methods. Searches were limited to articles in PubMed, Web of Science and Scopus. Conclusion We recommend greater efforts to assess validity and biases of airline passenger data used for modelling studies, particularly when model outputs are to inform national and international public health policies. We also recommend improving reporting standards and more detailed studies on biases in commercial and open-access data to assess their reproducibility

    Seasonal and inter-seasonal RSV activity in the European Region during the COVID-19 pandemic from autumn 2020 to summer 2022

    Get PDF
    Background The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in early 2020 and subsequent implementation of public health and social measures (PHSM) disrupted the epidemiology of respiratory viruses. This work describes the epidemiology of respiratory syncytial virus (RSV) observed during two winter seasons (weeks 40–20) and inter-seasonal periods (weeks 21–39) during the pandemic between October 2020 and September 2022. Methods Using data submitted to The European Surveillance System (TESSy) by countries or territories in the World Health Organization (WHO) European Region between weeks 40/2020 and 39/2022, we aggregated country-specific weekly RSV counts of sentinel, non-sentinel and Severe Acute Respiratory Infection (SARI) surveillance specimens and calculated percentage positivity. Results for both 2020/21 and 2021/22 seasons and inter-seasons were compared with pre-pandemic 2016/17 to 2019/20 seasons and inter-seasons. Results Although more specimens were tested than in pre-COVID-19 pandemic seasons, very few RSV detections were reported during the 2020/21 season in all surveillance systems. During the 2021 inter-season, a gradual increase in detections was observed in all systems. In 2021/22, all systems saw early peaks of RSV infection, and during the 2022 inter-seasonal period, patterns of detections were closer to those seen before the COVID-19 pandemic. Conclusion RSV surveillance continued throughout the COVID-19 pandemic, with an initial reduction in transmission, followed by very high and out-of-season RSV circulation (summer 2021) and then an early start of the 2021/22 season. As of the 2022/23 season, RSV circulation had not yet normalised

    Estimating the potential for global dissemination of pandemic pathogens using the global airline network and healthcare development indices

    Get PDF
    Pandemics have the potential to incur significant health and economic impacts, and can reach a large number of countries from their origin within weeks. Early identification and containment of a newly emerged pandemic within the source country is key for minimising global impact. To identify a country’s potential to control and contain a pathogen with pandemic potential, we compared the quality of a country’s healthcare system against its global airline connectivity. Healthcare development was determined using three multi-factorial indices, while detailed airline passenger data was used to identify the global connectivity of all countries. Proximities of countries to a putative ‘Worst Case Scenario’ (extreme high-connectivity and low-healthcare development) were calculated. We found a positive relationship between a country’s connectivity and healthcare metrics. We also identified countries that potentially pose the greatest risk for pandemic dissemination, notably Dominican Republic, India and Pakistan. China and Mexico, both sources of recent influenza and coronavirus pandemics were also identified as among the highest risk countries. Collectively, lower-middle and upper-middle income countries represented the greatest risk, while high income countries represented the lowest risk. Our analysis represents an alternative approach to identify countries where increased within-country disease surveillance and pandemic preparedness may benefit global health

    Detecting spatio-temporal mortality clusters of European countries by sex and ag

    Full text link
    [EN] Background: Mortality decreased in European Union (EU) countries during the last century. Despite these similar trends, there are still considerable differences in the levels of mortality between Eastern and Western European countries. Sub-group analysis of mortality in Europe for different age and sex groups is common, however to our knowledge a spatio-temporal methodology as in this study has not been applied to detect significant spatial dependence and interaction with time. Thus, the objective of this paper is to quantify the dynamics of mortality in Europe and detect significant clusters of mortality between European countries, applying spatio-temporal methodology. In addition, the joint evolution between the mortality of European countries and their neighbours over time was studied. Methods: The spatio-temporal methodology used in this study takes into account two factors: time and the geographical location of countries and, consequently, the neighbourhood relationships between them. This methodology was applied to 26 European countries for the period 1990-2012. Results: Principally, for people older than 64 years two significant clusters were obtained: one of high mortality formed by Eastern European countries and the other of low mortality composed of Western countries. In contrast, for ages below or equal to 64 years only the significant cluster of high mortality formed by Eastern European countries was observed. In addition, the joint evolution between the 26 European countries and their neighbours during the period 1990-2012 was confirmed. For this reason, it can be said that mortality in EU not only depends on differences in the health systems, which are a subject to national discretion, but also on supra-national developments. Conclusions: This paper proposes statistical tools which provide a clear framework for the successful implementation of development public policies to help the UE meet the challenge of rethinking its social model (Social Security and health care) and make it sustainable in the medium term.The authors are grateful for the financial support provided by the Ministry of Economy and Competitiveness, project MTM2013-45381-P. Adina Iftimi gratefully acknowledges financial support from the MECyD (Ministerio de Educacion, Cultura y Deporte, Spain) Grant FPU12/04531. Francisco Montes is grateful for the financial support provided by the Spanish Ministry of Economy and Competitiveness, project MTM2016-78917-R. The research by Patricia Carracedo and Ana Debon has been supported by a grant from the Mapfre Foundation.Carracedo-Garnateo, P.; Debón Aucejo, AM.; Iftimi, A.; Montes-Suay, F. (2018). Detecting spatio-temporal mortality clusters of European countries by sex and ag. International Journal for Equity in Health. 17:1-19. https://doi.org/10.1186/s12939-018-0750-zS11917Anderson TW, Goodman LA. Statistical Inference about Markov Chains. Ann Math Stat. 1957; 28(1):89–110.Anselin L. Local Indicators of Spatial Association–LISA. Geographical Anal. 1995; 27(2):93–115.Bilbao-Ubillos J. Is there still such a thing as the ‘European social model’?. Int J Soc Welf. 2016; 25:110–25.Bivand R. spdep: Spatial Dependence:Weighting Schemes, Statistics and Models. 2012. R package version 0.5-53. http://CRAN.R-project.org/package=spdep .Bivand R, Hauke J, Kossowski T. Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods. Geographical Anal. 2013; 45(2):150–79.Bivand R, Keitt T, Rowlingson B. rgdal: Bindings for the Geospatial Data Abstraction Library. 2016. R package version 1.1-10. https://CRAN.R-project.org/package=rgdal .Bivand R, Lewin-Koh N. maptools: Tools for Reading and Handling Spatial Objects. 2016. R package version 0.8-39 https://CRAN.R-project.org/package=maptools .Bonneux L, Huisman C. de Beer J. Mortality in 272 European regions, 2002-2004: an update. Eur J Epidemiol. 2010; 25(1):77–85. Reporting year: 2010.Charpentier A. Computational Actuarial Science with R. Chapman y Hall/CRC. 2014.Cliff AD, Ord JK. Spatial autocorrelation. London: Pion; 1973.Cutler D, Deaton A, Lleras-Muney A. The Determinants of Mortality. J Econ Perspect. 2006; 20(3):97–120.Debón A, Chaves L, Haberman S, Villa F. Characterization of between-group inequality of longevity in European Union countries. Insur Math Econ. 2017; 75:151–65.Fleiss J, Levin B, Paik M. Statistical Methods for Rates and Proportions: Wiley; 2013.Gordon M. Gmisc: Descriptive Statistics, Transition Plots, and More. 2016. R package version 1.3.1. https://CRAN.R-project.org/package=Gmisc .Hinde A. Demographic methods. Routledge: Routledge; 1998.Hyndman RJ, Booth H, Tickle L, Maindonald J. demography: Forecasting mortality, fertility, migration and population data. 2014. package version 1.18. https://CRAN.R-project.org/package=demography .Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). 2016. Available at www.mortality.org or www.humanmortality.de (data downloaded on 12th July 2016).Hatzopoulos P, Haberman S. Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance Math Econ. 2013; 52(2):320–37.Iftimi A, Montes F, Santiyán AM, Martínez-Ruiz F. Space–time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain Spatial Spatio-Temporal Epidemiol. 2015; 14:33–44.Julious S, Nicholl J, George S. Why do we continue to use standardized mortality ratios for small area comparisons?. J Public Health. 2001; 23(1):40–6.Laurent T, Ruiz-Gazen A, Thomas-Agnan C. GeoXp: An R package for exploratory spatial data analysis. J Stat Softw. 2012; 47(2):1–23.Leon DA. Trends in European life expectancy: a salutary view. Int J Epidemiol. 2011; 40:271–7.Li H, Li L, Wu B, Xiong Y. The End of Cheap Chinese Labor. J Econ Perspect. 2013; 26(4):57–74.Mackenbach JP, Karanikolos M, McKee M. The unequal health of Europeans: successes and failures of policies. The Lancet. 2013; 381(9872):1125–34.Meslé F. Mortality in Central and Eastern Europe: Long-term trends and recent upturns. Demographic Res. 2004; 2:45–70.Meslé F, Vallin J. Mortality in Europe: The divergence between East and West. Population (English Edition). 2002; 57(1):157–97.Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950; 37(1-2):17–23.Moran PAP. A Test for the Serial Independence of Residuals. Biometrika. 1950; 37(1/2):178–81.Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version. 2014; 1:1–2. https://CRAN.R-project.org/package=RColorBrewer .Oleckno WA. Epidemiology: concepts and methods: Waveland Press, Inc.; 2008.Quah D. Galton’s Fallacy and Tests of the Convergence Hypothesis. Scand J Econ. 1993; 95(4):427–43.R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2015. https://www.R-project.org/ .Rey S. In: Fischer MM, Nijkamp P, (eds).Spatial Dynamics and Space-Time Data Analysis. Berlin, Heidelberg: Springer: Handbook of Regional Science; 2014, pp. 1365–83.Rey SJ. Spatial Empirics for Economic Growth and Convergence. Geogr Anal. 2001; 33(3):195–214.Riffe T. Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR. 2015.Schofield R, Reher D, Bideau A. The Decline of Mortality in Europe. International studies in demography. Oxford: Clarendon Press; 1991.Shaw M, Orford S, Brimblecombe N, Dorling D. Widening inequality in mortality between 160 regions of 15 European countries in the early 1990s. Soc Sci Med. 2000; 50(7-8):1047–58.Spinakis A, Anastasiou G, Panousis V, Spiliopoulos K, Palaiologou S, Yfantopoulos J. Expert Review and Proposals for Measurement of Health Inequalities in the European Union. European Commission. Technical report,Luxembourg: European Commission Directorate General for Health and Consumers; 2011. http://ec.europa.eu/health/social_determinants/docs/full_quantos_en.pdf .Staehr K. Economic transition in Estonia. Background, reforms and results In: Rindzeviciute E, editor. Contemporary Change in Estonia. Baltic and East European Studies. Sodertorns hogskola: Baltic and East European Studies: 2004. p. 437–67.Trnka L, Dankova D, Zitova J, Cimprichova L, Migliori GB, Clancy L, Zellweger J. Survey of BCG vaccination policy in Europe: 1994-96. Bull World Health Organ. 1998; 76(1):85–91.United Nations Inter–agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2013. New York: Technical report, United Nations Children’s Fund; 2013. Avaliable at www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2013.pdf Accessed 27 Oct 2016.Vågerö D. The east–west health divide in Europe: Growing and shifting eastwards. Eur Rev. 2010; 18(01):23–34.Vaupel JW, Zhang Z, van Raalte AA, Vaupel JW, Zhang Z, van Raalte AA. Life expectancy and disparity: an international comparison of life table data. BMJ Open. 2011; 1:e000128.Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. R package version 1.11.1. 2016. https://CRAN.R-project.org/package=devtools .Wilcox R. Introduction to robust estimation and hypothesis testing, 3rd Edition.San Diego: Academic Press; 2012

    The State Socialist Mortality Syndrome

    Get PDF
    Death rates for working-age men in European state socialist countries deviated from general improvements in survival observed in the rest of Europe during the 20th century. The magnitude of structural labor force changes across countries correlates with lagged increases in death rates for men in the working ages. This pattern is consistent with a hypothesis that hyper-development of heavy industry and stagnation (even contraction) of the service sector created anomic conditions leading to unhealthy lifestyles and self-destructive behavior among men moving from primary-sector to secondary-sector occupations. Occupational contrasts within countries similarly show concentration of rising male death rates among blue collar workers. Collapse of state socialist systems produced rapid corrections in labor force structure after 1990, again correlated with a fading of the state socialist mortality syndrome in following decades

    Cause-of-Death Contributions to Educational Inequalities in Mortality in Austria between 1981/1982 and 1991/1992: Les contributions des causes de décès aux inégalités de mortalité par niveau d’éducation en Autriche entre 1981/1982 et 1991/1992

    Get PDF
    This article uses census records and deaths records to analyze trends in educational inequalities in mortality for Austrian women and men aged 35–64 years between 1981/1982 and 1991/1992. We find an increasing gradient in mortality by education for circulatory diseases and especially ischaemic heart disease. Respiratory diseases and, in addition for women, cancers showed the opposite trend. Using decomposition analysis, we give evidence that in many cases changes in the age-structure within the 10-year interval had a bigger effect than direct improvements in mortality on the analyzed subpopulations

    Sharp upturn of life expectancy in the Netherlands: effect of more health care for the elderly?

    Get PDF
    During the 1980s and 1990s life expectancy at birth has risen only slowly in the Netherlands. In 2002, however, the rise in life expectancy suddenly accelerated. We studied the possible causes of this remarkable development. Mortality data by age, gender and cause of death were analyzed using life table methods and age-period-cohort modeling. Trends in determinants of mortality (including health care delivery) were compared with trends in mortality. Two-thirds of the increase in life expectancy at birth since 2002 were due to declines in mortality among those aged 65 and over. Declines in mortality reflected a period rather than a cohort effect, and were seen for a wide range of causes of death. Favorable changes in mortality determinants coinciding with the acceleration of mortality decline were mainly seen within the health care system. Health care expenditure rose rapidly after 2001, and was accompanied by a sharp rise of specialist visits, drug prescriptions, hospital admissions and surgical procedures among the elderly. A decline of deaths following non-treatment decisions suggests a change towards more active treatment of elderly patients. Our findings are consistent with the idea that the sharp upturn of life expectancy in the Netherlands was at least partly due to a sharp increase in health care for the elderly, and has been facilitated by a relaxation of budgetary constraints in the health care system
    corecore