525 research outputs found

    The reality of employer engagement in work-based learning

    Get PDF

    A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle

    Get PDF
    Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We developed a metric, scaled block size (SBS), which uses the nonrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient types of admixture, and applied it to the reconstruction of admixture in cattle. Cattle are descendants of 2 independently domesticated lineages, taurine and indicine, which diverged more than 200 000 years ago. Several breeds have hybrid ancestry between these divergent lineages. Using 47 506 single-nucleotide polymorphisms, we analyzed the genomic architecture of the ancestry of 1369 individuals. We focused on 4 groups with admixed ancestry, including 2 anciently admixed African breeds (n = 58; n = 43), New World cattle of Spanish origin (n = 51), and known recent hybrids (n = 46). We estimated the ancestry of chromosomal regions for each individual and used the SBS metric to differentiate the timing of admixture among groups and among individuals within groups. By comparing SBS values of test individuals with standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed cattle. We also estimated ancestry at the chromosomal scale. The X chromosome exhibits reduced indicine ancestry in recent hybrid, New World, and western African cattle, with virtually no evidence of indicine ancestry in New World cattle. Key words: cattle, chromosome painting, hybridization, introgressionGraduate Program in Ecology, Evolution, and Behavior at the University of Texas at Austin; Texas EcoLabs; Texas Longhorn Cattleman’s Foundation; National Science Foundation BEACON (Cooperative Agreement DBI–0939454); Extreme Science and Engineering Discovery Environment (XSEDE), National Science Foundation (OCI–1053575)

    We Could, but Should We? Ethical Considerations for Providing Access to GeoCities and Other Historical Digital Collections

    Get PDF
    We live in an era in which the ways that we can make sense of our past are evolving as more artifacts from that past become digital. At the same time, the responsibilities of traditional gatekeepers who have negotiated the ethics of historical data collection and use, such as librarians and archivists, are increasingly being sidelined by the system builders who decide whether and how to provide access to historical digital collections, often without sufficient reflection on the ethical issues at hand. It is our aim to better prepare system builders to grapple with these issues. This paper focuses discussions around one such digital collection from the dawn of the web, asking what sorts of analyses can and should be conducted on archival copies of the GeoCities web hosting platform that dates to 1994.This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the US National Science Foundation (grants 1618695 and 1704369), the Andrew W. Mellon Foundation, Start Smart Labs, and Compute Canada

    Mitral cell spike synchrony modulated by dendrodendritic synapse location

    Get PDF
    On their long lateral dendrites, mitral cells of the olfactory bulb form dendrodendritic synapses with large populations of granule cell interneurons. The mitral-granule cell microcircuit operating through these reciprocal synapses has been implicated in inducing synchrony between mitral cells. However, the specific mechanisms of mitral cell synchrony operating through this microcircuit are largely unknown and are complicated by the finding that distal inhibition on the lateral dendrites does not modulate mitral cell spikes. In order to gain insight into how this circuit synchronizes mitral cells within its spatial constraints, we built on a reduced circuit model of biophysically realistic multi-compartment mitral and granule cells to explore systematically the roles of dendrodendritic synapse location and mitral cell separation on synchrony. The simulations showed that mitral cells can synchronize when separated at arbitrary distances through a shared set of granule cells, but synchrony is optimally attained when shared granule cells form two balanced subsets, each subset clustered near to a soma of the mitral cell pairs. Another constraint for synchrony is that the input magnitude must be balanced. When adjusting the input magnitude driving a particular mitral cell relative to another, the mitral-granule cell circuit served to normalize spike rates of the mitral cells while inducing a phase shift or delay in the more weakly driven cell. This shift in phase is absent when the granule cells are removed from the circuit. Our results indicate that the specific distribution of dendrodendritic synaptic clusters is critical for optimal synchronization of mitral cell spikes in response to their odor input

    Functional Roles of Distributed Synaptic Clusters in the Mitral–Granule Cell Network of the Olfactory Bulb

    Get PDF
    Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral–granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception

    Propranolol reduces implicit negative racial bias.

    Get PDF
    BACKGROUND: Implicit negative attitudes towards other races are important in certain kinds of prejudicial social behaviour. Emotional mechanisms are thought to be involved in mediating implicit "outgroup" bias but there is little evidence concerning the underlying neurobiology. The aim of the present study was to examine the role of noradrenergic mechanisms in the generation of implicit racial attitudes. METHODS: Healthy volunteers (n = 36) of white ethnic origin, received a single oral dose of the β-adrenoceptor antagonist, propranolol (40 mg), in a randomised, double-blind, parallel group, placebo-controlled, design. Participants completed an explicit measure of prejudice and the racial implicit association test (IAT), 1-2 h after propranolol administration. RESULTS: Relative to placebo, propranolol significantly lowered heart rate and abolished implicit racial bias, without affecting the measure of explicit racial prejudice. Propranolol did not affect subjective mood. CONCLUSIONS: Our results indicate that β-adrenoceptors play a role in the expression of implicit racial attitudes suggesting that noradrenaline-related emotional mechanisms may mediate negative racial bias. Our findings may also have practical importance given that propranolol is a widely used drug. However, further studies will be needed to examine whether a similar effect can be demonstrated in the course of clinical treatment

    How do SNP ascertainment schemes and population demographics affect inferences about population history?

    Get PDF
    Background: The selection of variable sites for inclusion in genomic analyses can influence results, especially when exemplar populations are used to determine polymorphic sites. We tested the impact of ascertainment bias on the inference of population genetic parameters using empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We simulated data under three demographic models. Each simulated data set was subjected to three ascertainment schemes: (I) random selection; (II) geographically biased selection; and (III) selection biased toward loci polymorphic in multiple groups. Empirical data comprised samples of 25 individuals representing each continental group. These cattle were genotyped for 47,506 loci from the bovine 50 K SNP panel. We compared the inference of population histories for the empirical and simulated data sets across different ascertainment conditions using FST_{ST} and principal components analysis (PCA). Results: Bias toward shared polymorphism across continental groups is apparent in the empirical SNP data. Bias toward uneven levels of within-group polymorphism decreases estimates of FST_{ST} between groups. Subpopulation-biased selection of SNPs changes the weighting of principal component axes and can affect inferences about proportions of admixture and population histories using PCA. PCA-based inferences of population relationships are largely congruent across types of ascertainment bias, even when ascertainment bias is strong. Conclusions: Analyses of ascertainment bias in genomic data have largely been conducted on human data. As genomic analyses are being applied to non-model organisms, and across taxa with deeper divergences, care must be taken to consider the potential for bias in ascertainment of variation to affect inferences. Estimates of FST_{ST}, time of separation, and population divergence as estimated by principal components analysis can be misleading if this bias is not taken into account

    The individuality of shape asymmetries of the human cerebral cortex

    Get PDF
    Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences

    Regulation of c-Raf stability through the CTLH complex

    Get PDF
    c-Raf is a central component of the extracellular signal-regulated kinase (ERK) pathway which is implicated in the development of many cancer types. RanBPM (Ran-Binding Protein M) was previously shown to inhibit c-Raf expression, but how this is achieved remains unclear. RanBPM is part of a recently identified E3 ubiquitin ligase complex, the CTLH (C-terminal to LisH) complex. Here, we show that the CTLH complex regulates c-Raf expression through a control of its degradation. Several domains of RanBPM were found necessary to regulate c-Raf levels, but only the C-terminal CRA (CT11-RanBPM) domain showed direct interaction with c-Raf. c-Raf ubiquitination and degradation is promoted by the CTLH complex. Furthermore, A-Raf and B-Raf protein levels are also regulated by the CTLH complex, indicating a common regulation of Raf family members. Finally, depletion of CTLH subunits RMND5A (required for meiotic nuclear division 5A) and RanBPM resulted in enhanced proliferation and loss of RanBPM promoted tumour growth in a mouse model. This study uncovers a new mode of control of c-Raf expression through regulation of its degradation by the CTLH complex. These findings also uncover a novel target of the CTLH complex, and suggest that the CTLH complex has activities that suppress cell transformation and tumour formation
    corecore