9 research outputs found

    Effect of Inclination of Twin Jets Impinging a Heated Wall

    Get PDF
    This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets

    SentiALG: Automated Corpus Annotation for Algerian Sentiment Analysis

    Full text link
    Data annotation is an important but time-consuming and costly procedure. To sort a text into two classes, the very first thing we need is a good annotation guideline, establishing what is required to qualify for each class. In the literature, the difficulties associated with an appropriate data annotation has been underestimated. In this paper, we present a novel approach to automatically construct an annotated sentiment corpus for Algerian dialect (a Maghrebi Arabic dialect). The construction of this corpus is based on an Algerian sentiment lexicon that is also constructed automatically. The presented work deals with the two widely used scripts on Arabic social media: Arabic and Arabizi. The proposed approach automatically constructs a sentiment corpus containing 8000 messages (where 4000 are dedicated to Arabic and 4000 to Arabizi). The achieved F1-score is up to 72% and 78% for an Arabic and Arabizi test sets, respectively. Ongoing work is aimed at integrating transliteration process for Arabizi messages to further improve the obtained results.Comment: To appear in the 9th International Conference on Brain Inspired Cognitive Systems (BICS 2018

    Turbulent heat transfer characteristics of water flow in a rotating pipe

    No full text
    International audienceLarge-Eddy-Simulation of turbulent heat transfer for water flow in rotating pipe is performed, for various rotation ratios (0 < N < 15). The value of the Reynolds number, based on the bulk velocity and pipe diameter, is Re = 5500. The aim of this study is to examine the effect of the rotating pipe on the turbulent heat transfer for water flow, as well as the reliability of the LES approach for predicting turbulent heat transfer in water flow. Some predictions for the case of non-rotating pipe are compared to the available results of literature for validation. To depict the influence of the rotation ratio on turbulent heat transfer, many statistical quantities are analyzed (distributions of mean temperature, rms of fluctuating temperature, turbulent heat fluxes, higher-order statistics). Some contours of instantaneous temperature fluctuations are examined

    Abstracts of 1st International Conference on Computational & Applied Physics

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Computational &amp; Applied Physics (ICCAP’2021) Organized by the Surfaces, Interfaces and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria, held on 26–28 September 2021. The Conference had a variety of Plenary Lectures, Oral sessions, and E-Poster Presentations. Conference Title: 1st International Conference on Computational &amp; Applied PhysicsConference Acronym: ICCAP’2021Conference Date: 26–28 September 2021Conference Location: Online (Virtual Conference)Conference Organizer: Surfaces, Interfaces, and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria
    corecore