794 research outputs found

    Two-dimensional Moist Stratified Turbulence and the Emergence of Vertically Sheared Horizontal Flows

    Full text link
    Moist stratified turbulence is studied in a two-dimensional Boussinesq system influenced by condensation and evaporation. The problem is set in a periodic domain and employs simple evaporation and condensation schemes, wherein both the processes push parcels towards saturation. Numerical simulations demonstrate the emergence of a moist turbulent state consisting of ordered structures with a clear power-law type spectral scaling from initially spatially uncorrelated conditions. An asymptotic analysis in the limit of rapid condensation and strong stratification shows that, for initial conditions with enough water substance to saturate the domain, the equations support a straightforward state of moist balance characterized by a hydrostatic, saturated, vertically sheared horizontal flow (VSHF). For such initial conditions, by means of long time numerical simulations, the emergence of moist balance is verified. Specifically, starting from uncorrelated data, subsequent to the development of a moist turbulent state, the system experiences a rather abrupt transition to a regime which is close to saturation and dominated by a strong VSHF. On the other hand, initial conditions which do not have enough water substance to saturate the domain, do not attain moist balance. Rather, the system remains in a turbulent state and oscillates about moist balance. Even though balance is not achieved with these general initial conditions, the time scale of oscillation about moist balance is much larger than the imposed time scale of condensation and evaporation, thus indicating a distinct dominant slow component in the moist stratified two-dimensional turbulent system.Comment: 23 pages. 9 figure

    Hybrid deterministic stochastic systems with microscopic look-ahead dynamics

    Get PDF
    We study the impact of stochastic mechanisms on a coupled hybrid system consisting of a general advection-diffusion-reaction partial differential equation and a spatially distributed stochastic lattice noise model. The stochastic dynamics include both spin-flip and spin-exchange type interparticle interactions. Furthermore, we consider a new, asymmetric, single exclusion pro- cess, studied elsewhere in the context of traffic flow modeling, with an one-sided interaction potential which imposes advective trends on the stochastic dynamics. This look-ahead stochastic mechanism is responsible for rich nonlinear behavior in solutions. Our approach relies heavily on first deriving approximate differential mesoscopic equations. These approximations become exact either in the long range, Kac interaction partial differential equation case, or, given sufficient time separation con- ditions, between the partial differential equation and the stochastic model giving rise to a stochastic averaging partial differential equation. Although these approximations can in some cases be crude, they can still give a first indication, via linearized stability analysis, of the interesting regimes for the stochastic model. Motivated by this linearized stability analysis we choose particular regimes where interacting nonlinear stochastic waves are responsible for phenomena such as random switching, convective instability, and metastability, all driven by stochasticity. Numerical kinetic Monte Carlo simulations of the coarse grained hybrid system are implemented to assist in producing solutions and understanding their behavior

    Structural, magnetic, dielectric and mechanical properties of (Ba,Sr)MnO3_3 ceramics

    Full text link
    Ceramic samples, produced by conventional sintering method in ambient air, 6H-SrMnO3_3(6H-SMO), 15R-BaMnO3_3(15R-BMO), 4H-Ba0.5_{0.5}Sr0.5_{0.5}MnO3_3(4H-BSMO) were studied. In the XRD measurements for SMO the new anomalies of the lattice parameters at 600-800 K range and the increasing of thermal expansion coefficients with a clear maximum in a vicinity at 670 K were detected. The Neˊ\acute{e}el phase transition for BSMO was observed at TNT_N=250 K in magnetic measurements and its trace was detected in dielectric, FTIR, DSC, and DMA experiments. The enthalpy and entropy changes of the phase transition for BSMO at TNT_N were determined as 17.5 J/mol and 70 mJ/K mol, respectively. The activation energy values and relaxation times characteristic for relaxation processes were determined from the Arrhenius law. Results of ab initio simulations showed that the contribution of the exchange correlation energy to the total energy is about 30%.Comment: 12 pages, 12 figure

    A dissipative random velocity field for fully developed fluid turbulence

    Full text link
    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter γ\gamma that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter γ\gamma and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion in power of γ\gamma shows that energy transfers, at leading order, indeed take place, justifying the dissipative nature of this random field.Comment: 38 pages, 5 figure

    How Cell Geometry and Cellular Patterning Influence Tissue Stiffness

    Get PDF
    Cell growth in plants occurs due to relaxation of the cell wall in response to mechanical forces generated by turgor pressure. Growth can be anisotropic, with the principal direction of growth often correlating with the direction of lower stiffness of the cell wall. However, extensometer experiments on onion epidermal peels have shown that the tissue is stiffer in the principal direction of growth. Here, we used a combination of microextensometer experiments on epidermal onion peels and finite element method (FEM) modeling to investigate how cell geometry and cellular patterning affects mechanical measurements made at the tissue level. Simulations with isotropic cell-wall material parameters showed that the orientation of elongated cells influences tissue apparent stiffness, with the tissue appearing much softer in the transverse versus the longitudinal directions. Our simulations suggest that although extensometer experiments show that the onion tissue is stiffer when stretched in the longitudinal direction, the effect of cellular geometry means that the wall is in fact softer in this direction, matching the primary growth direction of the cells
    corecore