7,111 research outputs found

    Efficient implementation of the adaptive scale pixel decomposition algorithm

    Full text link
    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used on image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims. However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computing cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods. As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results.The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.Comment: 6 pages; 4 figure

    Photon orbital angular momentum and torque metrics for single telescopes and interferometers

    Full text link
    Context. Photon orbital angular momentum (POAM) is normally invoked in a quantum mechanical context. It can, however, also be adapted to the classical regime, which includes observational astronomy. Aims. I explain why POAM quantities are excellent metrics for describing the end-to-end behavior of astronomical systems. To demonstrate their utility, I calculate POAM probabilities and torques from holography measurements of EVLA antenna surfaces. Methods. With previously defined concepts and calculi, I present generic expressions for POAM spectra, total POAM, torque spectra, and total torque in the image plane. I extend these functional forms to describe the specific POAM behavior of single telescopes and interferometers. Results. POAM probabilities of spatially uncorrelated astronomical sources are symmetric in quantum number. Such objects have zero intrinsic total POAM on the celestial sphere, which means that the total POAM in the image plane is identical to the total torque induced by aberrations within propagation media & instrumentation. The total torque can be divided into source- independent and dependent components, and the latter can be written in terms of three illustrative forms. For interferometers, complications arise from discrete sampling of synthesized apertures, but they can be overcome. POAM also manifests itself in the apodization of each telescope in an array. Holography of EVLA antennas observing a point source indicate that ~ 10% of photons in the n = 0 state are torqued to n != 0 states. Conclusions. POAM quantities represent excellent metrics for characterizing instruments because they are used to simultaneously describe amplitude and phase aberrations. In contrast, Zernike polynomials are just solutions of a differential equation that happen to ~ correspond to specific types of aberrations and are typically employed to fit only phases

    Quiescent NIR and optical counterparts to candidate black hole X-ray binaries

    Get PDF
    We present near-infrared and optical imaging of fifteen candidate black hole X-ray binaries. In addition to quiescent observations for all sources, we also observed two of these sources (IGR J17451-3022 and XTE J1818-245) in outburst. We detect the quiescent counterpart for twelve out of fifteen sources, and for the remaining three we report limiting magnitudes. The magnitudes of the detected counterparts range between KsK_s = 17.59 and KsK_s = 22.29 mag. We provide (limits on) the absolute magnitudes and finding charts of all sources. Of these twelve detections in quiescence, seven represent the first quiescent reported values (for MAXI J1543-564, XTE J1726-476, IGR J17451-3022, XTE J1818-245, MAXI J1828-249, MAXI J1836-194, Swift J1910.2-0546) and two detections show fainter counterparts to XTE J1752-223 and XTE J2012+381 than previously reported. We used theoretical arguments and observed trends, for instance between the outburst and quiescent X-ray luminosity and orbital period PorbP_{orb} to derive an expected trend between ΔKs\Delta K_s and PorbP_{orb} of ΔKslogPorb0.565\Delta K_s \propto \log P_{orb}^{0.565}. Comparing this to observations we find a different behaviour. We discuss possible explanations for this result.Comment: 18 pages, 6 figures. Accepted for publication in MNRA

    Russia and the Baltic Sea: 1920-1970

    Get PDF
    During the civil war which followed the Russian Revolution, Russia\u27s naval power in the Baltic was reduced to insignificance. The Baltic Fleet lost the political confidence of the Government as a result of the Kronstadt mutiny of 1921, and its material and moral degenerated further in the confusion and chaos of the times

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    Universal Scaling in Non-equilibrium Transport Through a Single-Channel Kondo Dot

    Full text link
    Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. Here we present measurements of non-equilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. The non-equilibrium Kondo transport measurements are well-described by a universal scaling function with two scaling parameters.Comment: v2: improved introduction and theory-experiment comparsio
    corecore