3,049 research outputs found

    Generalized Stable Multivariate Distribution and Anisotropic Dilations

    Full text link
    After having closely re-examined the notion of a L\'evy's stable vector, it is shown that the notion of a stable multivariate distribution is more general than previously defined. Indeed, a more intrinsic vector definition is obtained with the help of non isotropic dilations and a related notion of generalized scale. In this framework, the components of a stable vector may not only have distinct Levy's stability indices α\alpha's, but the latter may depend on its norm. Indeed, we demonstrate that the Levy's stability index of a vector rather correspond to a linear application than to a scalar, and we show that the former should satisfy a simple spectral property

    A Complexity View of Rainfall

    Full text link
    We show that rain events are analogous to a variety of nonequilibrium relaxation processes in Nature such as earthquakes and avalanches. Analysis of high-resolution rain data reveals that power laws describe the number of rain events versus size and number of droughts versus duration. In addition, the accumulated water column displays scale-less fluctuations. These statistical properties are the fingerprints of a self-organized critical process and may serve as a benchmark for models of precipitation and atmospheric processes.Comment: 4 pages, 5 figure

    Can the palatability of healthy, satiety-promoting foods increase with repeated exposure during weight loss?

    Get PDF
    Repeated exposure to sugary, fatty, and salty foods often enhances their appeal. However, it is unknown if exposure influences learned palatability of foods typically promoted as part of a healthy diet. We tested whether the palatability of pulse containing foods provided during a weight loss intervention which were particularly high in fiber and low in energy density would increase with repeated exposure. At weeks 0, 3, and 6, participants (n = 42; body mass index (BMI) 31.2 ± 4.3 kg/m²) were given a test battery of 28 foods, approximately half which had been provided as part of the intervention, while the remaining half were not foods provided as part of the intervention. In addition, about half of each of the foods (provided as part or not provided as part of the intervention) contained pulses. Participants rated the taste, appearance, odor, and texture pleasantness of each food, and an overall flavor pleasantness score was calculated as the mean of these four scores. Linear mixed model analyses showed an exposure type by week interaction effect for taste, texture and overall flavor pleasantness indicating statistically significant increases in ratings of provided foods in taste and texture from weeks 0 to 3 and 0 to 6, and overall flavor from weeks 0 to 6. Repeated exposure to these foods, whether they contained pulses or not, resulted in a ~4% increase in pleasantness ratings. The long-term clinical relevance of this small increase requires further study.T32 AT000815 - NCCIH NIH HH

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling

    Percolating magmas in three dimensions

    Get PDF
    The classical models of volcanic eruptions assume that they originate as a consequence of critical stresses or critical strain rates being exceeded in the magma followed by catastrophic fragmentation. In a recent paper (Gaonac'h et al., 2003) we proposed an additional mechanism based on the properties of complex networks of overlapping bubbles; that extreme multibubble coalescence could lead to catastrophic changes in the magma rheology at a critical vesicularity. This is possible because at a critical vesicularity <i>P<sub>c</sub></i> (the percolation threshold), even in the absence of external stresses the magma fragments. By considering 2-D percolation with the (observed) extreme power law bubble distributions, we showed numerically that <i>P<sub>2c</sub></i> had the apparently realistic value ≈0.7. <br><br> The properties of percolating systems are, however, significantly different in 2-D and 3-D. In this paper, we discuss various new features relevant to 3-D percolation and compare the model predictions with empirical data on explosive volcanism. The most important points are a) bubbles and magma have different 3-D critical percolation points; we show numerically that with power law bubble distributions that the important magma percolation threshold <i>P<sub>3c,m</sub></i> has the high value ≈0.97±0.01, b) a generic result of 3-D percolation is that the resulting primary fragments will have power law distributions with exponent <i>B<sub>3f</sub></i>≈1.186±0.002, near the empirical value (for pumice) ≈1.1±0.1; c) we review the relevant percolation literature and point out that the elastic properties may have lower – possibly more realistic – critical vesicularities relevant to magmas; d) we explore the implications of long range correlations (power law bubble distributions) and discuss this in combination with bubble anisotropy; e) we propose a new kind of intermediate "elliptical" dimensional percolation involving differentially elongated bubbles and show that it can lead to somewhat lower critical thresholds. <br><br> These percolation mechanisms for catastrophically weakening magma would presumably operate in conjunction with the classical critical stress and critical strain mechanisms. We conclude that percolation theory provides an attractive theoretical framework for understanding highly vesicular magma

    Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    Get PDF
    This is the final version. Available on open access from Springer Nature via the DOI in this recordArctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.This study was conducted as part of the MALINA Scientific Program led by MB and funded by the French National Research Agency (ANR), INSU-CNRS (Institut National des Sciences de l'Univers – Centre National de la Recherche Scientifique), CNES (Centre National d'Etudes Spatiales) and ESA (European Space Agency). Computing support was provided by CLUMEQ/Compute Canada. Additional funding was provided by the Natural Science and Engineering Council (NSERC) of Canada to CL, and Fond Québécois de Recherches Nature et Technologies (FQRNT) for Québec Océan, and is a contribution to ArcticNet. AF, AMa and AMo received scholarships from the Canadian Excellence Research Chair (CERC) in remote sensing of Canada’s new Arctic frontier, and JC was supported by FQRNT and the EnviroNorth (CREATE program from NSERC)

    Time trends and persistence in European temperature anomalies.

    Get PDF
    This paper looks at the level of persistence in the temperature anomalies series of 114 European cities. Once this level of persistence has been identified, the time trend coefficients are estimated and the results indicate that most of the series examined display positive trends, supporting thus climate warming. Moreover, the results obtained confirm the hypothesis that long-memory behaviour cannot be neglected in the study of temperature time series, changing, therefore, the estimated effect of global warming.pre-print825 K

    Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Get PDF
    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics

    Age-related changes in the energy of human mesenchymal stem cells

    Get PDF
    Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells
    • …
    corecore