39 research outputs found

    Toward sulfur-free RAFT polymerization induced self-assembly

    Get PDF
    Polymerization induced self-assembly (PISA) using methacrylate-based macromonomers as RAFT agents is an unexplored, attractive route to make self-assembled colloidal objects. The use of this class of RAFT-agents in heterogeneous polymerizations is however not trivial, because of their inherent low reactivity. In this work we demonstrate that two obstacles need to be overcome, one being control of chain-growth (propagation), the other monomer partitioning. Batch dispersion polymerizations of hydroxypropyl methacrylate in the presence of poly(glycerol methacrylate) macromonomers in water showed limited control of chain-growth. Semicontinuous experiments whereby monomer was fed improved results only to some extent. Control of propagation is essential for PISA to allow for dynamic rearrangement of colloidal structures. We tackled the problem of monomer partitioning (caused by uncontrolled particle nucleation) by starting the polymerization with an amphiphilic thermoresponsive diblock copolymer, already “phase-separated” from solution. TEM analysis showed that PISA was successful and that different particle morphologies were obtained throughout the polymerization

    Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enzymes in the radical SAM (rSAM) domain family serve in a wide variety of biological processes, including RNA modification, enzyme activation, bacteriocin core peptide maturation, and cofactor biosynthesis. Evolutionary pressures and relationships to other cellular constituents impose recognizable grammars on each class of rSAM-containing system, shaping patterns in results obtained through various comparative genomics analyses.</p> <p>Results</p> <p>An uncharacterized gene cluster found in many Actinobacteria and sporadically in Firmicutes, Chloroflexi, Deltaproteobacteria, and one Archaeal plasmid contains a PqqE-like rSAM protein family that includes Rv0693 from <it>Mycobacterium tuberculosis</it>. Members occur clustered with a strikingly well-conserved small polypeptide we designate "mycofactocin," similar in size to bacteriocins and PqqA, precursor of pyrroloquinoline quinone (PQQ). Partial Phylogenetic Profiling (PPP) based on the distribution of these markers identifies the mycofactocin cluster, but also a second tier of high-scoring proteins. This tier, strikingly, is filled with up to thirty-one members per genome from three variant subfamilies that occur, one each, in three unrelated classes of nicotinoproteins. The pattern suggests these variant enzymes require not only NAD(P), but also the novel gene cluster. Further study was conducted using SIMBAL, a PPP-like tool, to search these nicotinoproteins for subsequences best correlated across multiple genomes to the presence of mycofactocin. For both the short chain dehydrogenase/reductase (SDR) and iron-containing dehydrogenase families, aligning SIMBAL's top-scoring sequences to homologous solved crystal structures shows signals centered over NAD(P)-binding sites rather than over substrate-binding or active site residues. Previous studies on some of these proteins have revealed a non-exchangeable NAD cofactor, such that enzymatic activity <it>in vitro </it>requires an artificial electron acceptor such as N,N-dimethyl-4-nitrosoaniline (NDMA) for the enzyme to cycle.</p> <p>Conclusions</p> <p>Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves <it>in vivo </it>as NDMA and other artificial electron acceptors do <it>in vitro</it>. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.</p

    Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins

    Get PDF
    Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology

    Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer

    Get PDF
    A molecularly imprinted polymer (MIP) film for domoic acid (DA) was synthesised by direct photo-grafting onto a gold chip suitable for a surface plasmon resonance (SPR) based bioanalytical instrument system, the BIAcore 3000™. The gold surface was first functionalised with a self-assembled monolayer of 2- mercaptoethylamine and subsequent carbodiimide chemistry was performed for covalent attachment of the photoinitiator, 4,4′-azobis(cyanovaleric acid). This ensured that the formation of the MIP thin film, comprising 2-(diethylamino) ethyl methacrylate as functional monomer and ethylene glycol dimethacrylate as cross-linker, occurred only at the surface level. Optimisation and control over the grafting procedure were achieved using contact angle measurements and atomic force microscope (AFM) imaging. The surface grafting resulted in the formation of thin and homogeneous MIP film with thickness of 40 nm. A competitive binding assay was performed with free DA and its conjugate with horseradish peroxidase, which was used as a refractive label. The sensor was evaluated for its sensitivity, cross-reactivity, and robustness by using a BIAcore 3000™. Likewise, monoclonal antibodies acting as natural receptors for the toxin were studied with the same BIAcore system. Results of a comparison between the artificial and natural receptors are reported. In contrast to monoclonal antibodies, the regeneration of MIP chip did not affect its recognition properties and continuous measurement was possible over a period of at least 2

    Evaluation of the poly-L-lactic acid implant for treatment of the nasolabial fold: 3-year follow-up evaluation

    No full text
    The search for an ideal filler for soft tissue augmentation still continues. Because aging changes are continuous, temporary fillers should be preferred against permanent ones. Since 1999, the poly-L-lactic acid filler (PLA) has been marketed in Europe as Newfill. As a synthetic biocompatible polymer, PLA originally was used in suture materials and screws. In 2004, the U.S. Food and Drug Administration approved PLA under the name of Sculptra for the treatment of human immunodeficiency virus-related facial lipoatrophy. This study aimed to evaluate a 3-year follow-up investigation into the effect of PLA implant injection for the treatment of sunken nasolabial folds. Between October 2003 and February 2004, 10 women with a median age of 54 years (range, 43-60 years) were injected with polylactic acid hydrogel (Newfill) in the nasolabial fold area for aesthetic reasons. All the patients underwent three injections: one injection per month for 3 months. Evaluation of the results based on clinical examination and photography was performed at each session, at 6 months, and then 36 months after the third session. Injectable PLA was able to correct nasolabial folds successfully with a more lasting result than absorbable fillers commonly used in clinical practice, such as hyaluronic acid and collagen. Careful and standardized photographic documentation is indispensable

    A Membrane-Based ELISA Assay and Electrochemical Immunosensor for Microcystin-LR in Water Samples

    No full text
    We describe within this paper the development of an affinity sensor for the detection of the cyanobacterial toxin microcystin-LR. The first stage of the work included acquiring and testing of the antibodies to this target. Following the investigation, a heterogeneous direct competitive enzyme-linked immunosorbent assay (ELISA) format for microcystin-LR detection was developed, achieving a detection limit, LLD<sub>80</sub> = 0.022 μg L<sup>–1</sup>. The system was then transferred to an affinity membrane sorbent-based ELISA. This was an amenable format for immunoassay incorporation into a disposable amperometric immunosensor device. This membrane-based ELISA achieved a detection limit, LLD<sub>80</sub> = 0.06 μg L<sup>–1</sup>. A three-electrode immunosensor system was fabricated using thick-film screen-printing technology. Amperometric horseradish peroxidase transduction of hydrogen peroxide catalysis, at low reducing potentials, versus Ag/AgCl reference and carbon counter electrodes, was facilitated by hydroquinone-mediated electron transfer. A detection limit of 0.5 μg L<sup>–1</sup> for microcystin-LR was achieved. Similar levels of detection could be obtained using direct electrochemical sensing of the dye produced using the membrane-based ELISA. These techniques proved to be simple, cost-effective, and suitable for the detection of microcystin-LR in buffer and spiked tap and river water samples
    corecore