195 research outputs found

    Inhibition of immunoglobulin production by parathyroid hormone. Implications in chronic renal failure

    Get PDF
    Inhibition of immunoglobulin production by parathyroid hormone. Implications in chronic renal failure. Available data indicate that B cell proliferation is inhibited in chronic renal failure and this is due to excess blood levels of PTH. This defect may also affect immunoglobulin production. We examined production of IgG, IgM and IgA by B cells stimulated with Staphylococcus aureus Cowan I (SAC) or with pokeweed mitogen (PWM) after eight days of culture and evaluated the effect of PTH on this process in 34 hemodialysis patients and 44 normal subjects. IgG, IgM and IgA production by B cells from patients was lower (P < 0.01) than by B cells from normal subjects. Both 1-34 and 1-84 PTH inhibited (P < 0.01) immunoglobulin production by B cells from normal subjects and dialysis patients. However, this inhibitory effect was evident in dialysis patients only with the higher dose of PTH. The inhibition of immunoglobulin production by PTH occurred only when the hormone was added at the initiation of the B cell culture. Inactivation of PTH abolished its inhibitory effect on immunoglobulin production. Agents that stimulate cAMP production (forskolin, cholera toxin) and the cAMP analogue, 8-bromoadenosine 3′,5′ cyclic monophosphate inhibited immunoglobulin production by B cells from both normal and dialysis patients, and the degree of inhibition was not different between the two groups. The calcium inophore A23187 also inhibited IgG, IgA and IgM production by B cells from normal subjects and dialysis patients; there was no significant difference in the degree of inhibition between the two groups. The resting levels of cytosolic calcium in B cells of dialysis patients was significantly (P < 0.01) higher than that of B cells from normal subjects. The data show that: (1) immunoglobulin production is impaired in dialysis patients; (2) B cells of dialysis patients have elevated resting levels of cytosolic calcium; (3) PTH inhibits IgG, IgA and IgM production and this effect is at least partly mediated by PTH-induced cAMP production and alterations in cytosolic calcium into B cells; (4) this inhibitory effect is mediated by events that affect initial stages of B cell proliferation and maturation; (5) the requirement for high dose of PTH for its inhibitory effect on B cells from dialysis patients is probably due to desensitization and/or down-regulation of PTH receptors on B cells. The results are consistent with the proposition that impaired immunoglobulin production by B cells from dialysis patients is at least partly due to the state of secondary hyperparathyroidism in these patients

    Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus

    Get PDF
    BACKGROUND: Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity. METHODS AND FINDINGS: We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity. CONCLUSIONS: These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus

    Interferon-inducible gene 202b controls CD8+ T cell-mediated suppression in anti-DNA Ig peptide-treated (NZB × NZW) F1 lupus mice

    Get PDF
    Administration of an artificial peptide (pConsensus) based on anti-DNA IgG sequences that contain major histocompatibility complex class I and class II T-cell determinants, induces immune tolerance in NZB/NZW F1 female (BWF1) mice. To understand the molecular basis of CD8+ Ti-mediated suppression, we previously performed microarray analysis to identify genes that were differentially expressed following tolerance induction with pCons. CD8+ T cells from mice tolerized with pCons showed more than two-fold increase in Ifi202b mRNA, an interferon inducible gene, versus cells from untolerized mice. Ifi202b expression increased through weeks 1–4 after tolerization and then decreased, reapproaching baseline levels at 6 weeks. In vitro polyclonal activation of tolerized CD8+ T cells significantly increased Ifi202b mRNA expression. Importantly, silencing of Ifi202b abrogated the suppressive capacity of CD8+ Ti cells. This was associated with decreased expression of Foxp3, and decreased gene and protein expression of transforming growth factor (TGF)β and interleukin-2 (IL-2), but not of interferon (IFN)-γ, IL-10, or IL-17. Silencing of another IFN-induced gene upregulated in tolerized CD8+ T cells, IFNAR1, had no effect on the ability of CD8+ T cells to suppress autoantibody production. Our findings indicate a potential role for Ifi202b in the suppressive capacity of peptide-induced regulatory CD8+ Ti cells through effects on the expression of Foxp3 and the synthesis of TGFβ

    Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity

    Get PDF
    INTRODUCTION: Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE. METHODS: Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored. RESULTS: We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells. CONCLUSIONS: The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE

    The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Get PDF
    We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation

    Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB. Yaa Mice

    Get PDF
    IL6 is a multifunctional cytokine that drives terminal B cell differentiation and secretion of immunoglobulins. IL6 also cooperates with IL21 to promote differentiation of CD4(+) T follicular helper cells (TFH). Elevated serum levels of IL6 correlate with disease flares in patients with systemic lupus erythematosus (SLE). We previously reported that IL21 produced by T-FH plays a critical role in the development of the SLE-like disease of BXSB. Yaa mice. To examine the possible contributions of IL6 to disease, we compared disease parameters in IL6-deficient and IL6-competent BXSB. Yaa mice. We report that survival of IL6-deficient BXSB. Yaa mice was significantly prolonged in association with significant reductions in a variety of autoimmune manifestations. Moreover, B cells stimulated by co-engagement of TLR7 and B cell receptor (BCR) produced high levels of IL6 that was further augmented by stimulation with Type I interferon (IFN1). Importantly, the frequencies of T-FH and serum levels of IL21 were significantly reduced in IL6-deficient mice. These findings suggest that high-level production of IL6 by B cells induced by integrated signaling from the IFN1 receptor, TLR7 and BCR promotes the differentiation of IL21-secreting T-FH in a signaling sequence that drives the lethal autoimmune disease of BXSB. Yaa mice.Peer reviewe

    Influence of adult thymectomy on growth of transplanted tumors in mice.

    No full text
    SUMMARY-Thymectomy of AKR and C3HeB mice at 4-8 weeks of age lowered their normal resistance to implanted tumors of foreign origin of the same or different H-2 transplantation locus. Five weeks after tumor implanta-tion, the level of peripheral blood lymphocytes of thymectomized animals that had rejected the tumor was significantly lower than that of their intact controls. When SBl-H, a tumor conditioned to the C3HeB strain, was used, the neoplastic implant grew in both thymectomized and intact recipients. However, tumor grafts growing in thymectomized animals lacked the usual lymphocytic infiltration found at the periphery of the tumors growing in the intact controls. Apparently the thymus still plays a significant and specific role in adult mice in relation to their homograft response to Foreign tumors.-J Nat Cancer Inst 41: 411-420, 1968. IT IS generally recognized that neonatal thy-mectomy severely damages the immunologic com-petence of the animals. Removal of the thymus o
    corecore