175 research outputs found

    Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence.

    Get PDF
    19 pags, 8 figs, tabsThe respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we character ize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their r edox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the w ay for the design of novel a ntimicrobialsThe authors thank the PXIII beamline at SLS and the ESRF beamline ID14‐1 for access to synchrotron radiation. We are also grateful to Kristine Sievert‐Giermann, Nadine Gotzmann and Melanie Skibbe (Department of Genetics, University of Greifswald, Germany) for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft DFG HA3125/4‐2 (to S.H.), DFG AN746/3‐1 (to H.A.), BFU2011‐25326 and S2010/BMD‐2457 (to J.A.H.) and EU FP7 CAREPNEUMO Grant EU‐CP223111 from the European Union (to J.A.H. and S.H.

    Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion

    Get PDF
    Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation

    Genome-Wide Survey and Expression Analysis Suggest Diverse Roles of Glutaredoxin Gene Family Members During Development and Response to Various Stimuli in Rice

    Get PDF
    Glutaredoxins (GRXs) are glutathione-dependent oxidoreductase enzymes involved in a variety of cellular processes. In this study, our analysis revealed the presence of 48 genes encoding GRX proteins in the rice genome. GRX proteins could be classified into four classes, namely CC-, CGFS-, CPYC- and GRL-type, based on phylogenetic analysis. The classification was supported with organization of predicted conserved putative motifs in GRX proteins. We found that expansion of this gene family has occurred largely via whole genome duplication events in a species-specific manner. We explored rice oligonucleotide array data to gain insights into the function of GRX gene family members during various stages of development and in response to environmental stimuli. The comprehensive expression analysis suggested diverse roles of GRX genes during growth and development in rice. Some of the GRX genes were expressed in specific organs/developmental stages only. The expression of many of rice GRX genes was influenced by various phytohormones, abiotic and biotic stress conditions, suggesting an important role of GRX proteins in response to these stimuli. The identification of GRX genes showing differential expression in specific tissues or in response to environmental stimuli provide a new avenue for in-depth characterization of selected genes of importance

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Cisplatin and Oxaliplatin Toxicity: Importance of Cochlear Kinetics as a Determinant for Ototoxicity

    Get PDF
    Background Cisplatin is a commonly used platinum anti-cancer drug. Regrettably cisplatin has dose-limiting ototoxic side effects, e.g. the drug can induce an irreversible hearing loss. The ototoxic mechanisms of cisplatin have not been elucidated in the human ear and no clinically useful oto-protectors are yet available. Cisplatin is a necessary part of many treatment regimes. Its beneficial therapeutic effects might be reduced if cisplatin was excluded from the treatment in order to protect the hearing function. In this work the ototoxic effects of cisplatin are studied with the aim to better understand the mechanisms behind the irreversible hearing loss induced by this drug. Oxaliplatin is a second generation platinum-derivative anti-cancer drug, free from ototoxic side effects in clinical practice. The effects of oxaliplatin on the inner ear have been studied in this work and the results are compared with cisplatin treatment. The two drugs differ regarding both anti-cancer effects and side effects, which could be attributed to differences in pharmacokinetic factors, cellular uptake and apoptotic mechanisms. The thioredoxin redox system with the enzyme thioredoxin reductase (TrxR) was studied in cochleae due to a suggested DNA-independent apoptotic mechanism of the hair cells. The cochlear pharmacokinetics of cisplatin was assessed and the transport protein organic cation transporter 2 (OCT2) was studied in relation to the ototoxic effect of cisplatin. Material and methods Cultured human colon carcinoma cells and cell cultures of rat organ of Corti were used for apoptosis studies in vitro following exposure to cisplatin and oxaliplatin. Cisplatin and oxaliplatin were administered i.v. to guinea pigs, followed by in vivo sampling of blood, cerebrospinal fluid (CSF) and scala tympani (ST) perilymph. Liquid chromatography with post-column derivatization was used to determine the concentration of parent drug in the samples. Electrophysiological hearing thresholds and the loss of hair cells were assessed to evaluate their ototoxic effects. Phenformin, a potential blocker of OCT2 was administered and the ototoxic side effect of cisplatin was evaluated. For immunohistochemical studies, cochlea from rat, guinea pig and pig were used, where TrxR and OCT2 were evaluated in the cochlea. TrxR-assays were used to measure the TrxR activity in cochlear tissue, both in vivo and in vitro. Results The results from the in vitro studies showed that addition of either cisplatin or oxaliplatin to the culture medium in organ of Corti cell cultures caused a similar amount of outer hair cell loss and inhibition of TrxR activity. Cisplatin exposure to cultured human colon carcinoma cells also reduced the activity of TrxR. The results from the in vivo studies showed that a considerable concentration of cisplatin was present in ST perilymph as compared with weak concentrations of oxaliplatin after high dose oxaliplatin i.v. Ten minutes after cisplatin administration, its concentration in ST perilymph was 4-fold higher in the basal turn of the cochlea as compared to the apex. Cisplatin could be analysed in ST perilymph for up to 120 min. Phenformin i.v. did not reduce the ototoxic side-effect of cisplatin. Positive immunoreactivity to TrxR was evident in both hair cells and spiral ganglion cells. Futhermore, OCT2 was expressed in the supporting cells of organ of Corti and in the spiral ganglion cells. Conclusion The transport of cisplatin to the vulnerable cells of hearing seems to be of major importance for the ototoxic effects. An early high concentration of cisplatin in the base of the cochlea and delayed elimination of cisplatin from ST perilymph may be related to the cisplatin-induced loss of outer hair cells in the basal turn of the cochlea. Cisplatin and oxaliplatin both cause similar ototoxic effects when the organ of Corti is directly exposed in vitro. The thioredoxin redox system with the TrxR enzyme may well play a critical role in cisplatininduced ototoxicity. The presence of OCT2 in the supporting cells indicates that this transport protein is primarily not involved in the uptake of cisplatin from the systemic circulation but rather from the deeper compartments of the cochlea. The knowledge elicited in this work will hopefully suggest objectives for further studies in order to develop oto-protective treatments to preserve the hearing of cisplatin treated patients

    Glutathione pathway gene variation and risk of autism spectrum disorders

    Get PDF
    Despite evidence that autism is highly heritable with estimates of 15 or more genes involved, few studies have directly examined associations of multiple gene interactions. Since inability to effectively combat oxidative stress has been suggested as a mechanism of autism, we examined genetic variation 42 genes (308 single-nucleotide polymorphisms (SNPs)) related to glutathione, the most important antioxidant in the brain, for both marginal association and multi-gene interaction among 318 case–parent trios from The Autism Genetic Resource Exchange. Models of multi-SNP interactions were estimated using the trio Logic Regression method. A three-SNP joint effect was observed for genotype combinations of SNPs in glutaredoxin, glutaredoxin 3 (GLRX3), and cystathione gamma lyase (CTH); OR = 3.78, 95% CI: 2.36, 6.04. Marginal associations were observed for four genes including two involved in the three-way interaction: CTH, alcohol dehydrogenase 5, gamma-glutamylcysteine synthetase, catalytic subunit and GLRX3. These results suggest that variation in genes involved in counterbalancing oxidative stress may contribute to autism, though replication is necessary

    Protective effects of a compound herbal extract (Tong Xin Luo) on free fatty acid induced endothelial injury: Implications of antioxidant system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tong-Xin-Luo (TXL) – a mixture of herbal extracts, has been used in Chinese medicine with established therapeutic efficacy in patients with coronary artery disease.</p> <p>Methods</p> <p>We investigated the protective role of TXL extracts on endothelial cells injured by a known risk factor – palmitic acid (PA), which is elevated in metabolic syndrome and associated with cardiovascular complications. Human aortic endothelial cells (HAECs) were preconditioned with TXL extracts before exposed to PA for 24 hours.</p> <p>Results</p> <p>We found that PA (0.5 mM) exposure induced 73% apoptosis in endothelial cells. However, when HAECs were preconditioned with ethanol extracted TXL (100 μg/ml), PA induced only 7% of the endothelial cells into apoptosis. Using antibody-based protein microarray, we found that TXL attenuated PA-induced activation of p38-MAPK stress pathway. To investigate the mechanisms involved in TXL's protective effects, we found that TXL reduced PA-induced intracellular oxidative stress. Through AMPK pathway, TXL restored the intracellular antioxidant system, which was depressed by the PA treatment, with an increased expression of thioredoxin and a decreased expression of the thioredoxin interacting protein.</p> <p>Conclusion</p> <p>In summary, our study demonstrates that TXL protects endothelial cells from PA-induced injury. This protection is likely mediated by boosting intracellular antioxidant capacity through AMPK pathway, which may account for the therapeutic efficacy in TXL-mediated cardiovascular protection.</p

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    Hypoxia Reduces Arylsulfatase B Activity and Silencing Arylsulfatase B Replicates and Mediates the Effects of Hypoxia

    Get PDF
    This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∼41% and ∼30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∼53% and ∼37%. When ARSB was silenced, nuclear HIF-1α increased by ∼81% and ∼61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∼37% and ∼54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia

    The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy

    Get PDF
    Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment
    corecore