491 research outputs found

    Biphasic Calcium Phosphate Bioceramics for Orthopaedic Reconstructions: Clinical Outcomes

    Get PDF
    BCP are considered the most promising biomaterials for bone reconstruction. This study aims at analyzing the outcomes of patients who received BCP as bone substitutes in orthopaedic surgeries. Sixty-six patients were categorized according to the etiology and morphology of the bone defects and received scores after clinical and radiographic evaluations. The final results corresponded to the combination of both parameters and varied from 5 (excellent result) to 2 or lower (poor result). Most of the patients who presented cavitary defects or bone losses due to prosthesis placement or revision, osteotomies, or arthrodesis showed good results, and some of them excellent results. However, patients with segmental defects equal or larger than 3 cm in length were classified as moderate results. This study established clinical parameters where the BCP alone can successfully support the osteogenic process and where the association with other tissue engineering strategies may be considered

    Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    Get PDF
    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilisers, by utilising pyrophosphates (P2O7 4-); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca2P2O7.nH2O and Sr2P2O7.nH2O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond ~8 A° in both phases, with this local order found to resemble crystalline analogues. Further studies, including 1H and 31P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P–O–P bond angles within the P2O7 units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to ~450° C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P2O7 anions, leading to the hydrolysis of some P–O–P linkages and the formation of HPO4 2- anions within the amorphous matrix. The latter anions then recombined into P2O7 ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme-assisted resorption and establish factors crucial to isolate further stable amorphous inorganic materials

    Ibuprofen-loaded calcium phosphate granules : combination of innovative characterization methods to relate mechanical strength to drug location

    Get PDF
    This paper studies the impact of the location of a drug substance on the physicochemical and mechanical properties of two types of calcium phosphate granules loaded with seven different contents of ibuprofen, ranging from 1.75% to 46%. These implantable agglomerates were produced by either low or high shear granulation. Unloaded Mi-Pro pellets presented higher sphericity and mechanical properties, but were slightly less porous than Kenwood granules (57.7% vs 61.2%). Nevertheless, the whole expected quantity of ibuprofen could be integrated into both types of granules. A combination of surface analysis, using near-infrared (NIR) spectroscopy coupling chemical imaging, and pellet porosity, by mercury intrusion measurements, allowed ibuprofen to be located. It was shown that, from 0% to 22% drug content, ibuprofen deposited simultaneously on the granule surface, as evidenced by the increase in surface NIR signal, and inside the pores, as highlighted by the decrease in pore volume. From 22%, porosity was almost filled, and additional drug substance coated the granule surfaces, leading to a large increase in the surface NIR signal. This coating was more regular for Mi-Pro pellets owing to their higher sphericity and greater surface deposition of drug substance. Unit crush tests using a microindenter revealed that ibuprofen loading enhanced the mechanical strength of granules, especially above 22% drug content, which was favorable to further application of the granules as a bone defect filler

    Sintering effects on chemical and physical properties of bioactive ceramics

    Get PDF
    The objective of this study was to characterize the chemical and physical properties of bioactive ceramics prepared from an aqueous paste containing hydroxyapatite (HA) and beta tri-calcium phosphate (β-TCP). Prior to formulating the paste, HA and β-TCP were calcined at 800 °C and 975 °C (11 h), milled, and blended into 15%/85% HA/β-TCP volume-mixed paste. Fabricated cylindrical rods were subsequently sintered to 900 °C, 1100 °C or 1250 °C. The sintered specimens were characterized by helium pycnometry, X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), and inductively coupled plasma (ICP) spectroscopy for evaluation of porosity, crystalline phase, functional-groups, and Ca:P ratio, respectively. Mechanical properties were assessed via 3-point bending and diametral compression. Qualitative microstructural evaluation using scanning electron microscopy (SEM) showed larger pores and a broader pore size distribution (PSD) for materials sintered at 900 °C and 1100 °C, whereas the 1250 °C samples showed more uniform PSD. Porosity quantification showed significantly higher porosity for materials sintered to 900 °C and 1250 °C (p< 0.05). XRD indicated substantial deviations from the 15%/85% HA/β-TCP formulation following sintering where lower amounts of HA were observed when sintering temperature was increased. Mechanical testing demonstrated significant differences between calcination temperatures and different sintering regimes (p < 0.05). Variation in chemical composition and mechanical properties of bioactive ceramics were direct consequences of calcination and sintering.Peer reviewedChemical Engineerin

    A mineralogical study in contrasts: highly mineralized whale rostrum and human enamel

    Get PDF
    The outermost enamel of the human tooth and the rostrum of the whale Mesoplodon densirostris are two highly mineralized tissues that contain over 95wt.% mineral, i.e., bioapatite. However, the same mineral type (carbonated hydroxylapatite) does not yield the same material properties, as revealed by Raman spectroscopy, scanning electron microscopy, electron microprobe analysis, and synchrotron X-ray diffraction analysis. Overall, the outermost enamel of a tooth has more homogeneous physical and chemical features than the rostrum. Chemical comparison of rostrum and enamel shows bioapatite in the rostrum to be enriched in Na, Mg, CO3, and S, whereas the outermost enamel shows only a slightly enriched Cl concentration. Morphologically, mineral rods (at tens of μm scale), crystallites and prisms (at μm and sub-μm scale), and platelets (at tens of nm scale) all demonstrate less organized texture in the rostrum than in enamel. Such contrasts between two mineralized tissues suggest distinct pathways of biomineralization, e.g., the nature of the equilibrium between mineral and body fluid. This study illustrates the remarkable flexibility of the apatite mineral structure to match its chemical and physical properties to specific biological needs within the same animal or between species.The work was partially funded by NIH grant 1R21AR055184-01A2 and SRF for ROCS, SEM

    Processing–structure–property relations of chemically bonded phosphate ceramic composites

    Get PDF
    ABSTRACT: Mechanical properties and microstructures of a chemically bonded phosphate ceramic (CBPC) and its composite with 1⋅0 wt% graphite nanoplatelets (GNPs) reinforcement have been investigated. Microstructure was identified by using optical and scanning electron microscopes, X-ray tomography, and X-ray diffraction. In addition, weight loss of the resin at room temperature was studied. The microstructure characterization shows that CBPC is itself a composite with several crystalline (wollastonite and brushite) and amorphous phases. SEM and micro tomography show a homogeneous distribution of crystalline phases. Bending and compression strength of the CBPC was improved by reducing bubbles via preparation in vacuum
    corecore