8,197 research outputs found

    Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping

    Full text link
    We study with Angle Resolved PhotoElectron Spectroscopy (ARPES) the evolution of the electronic structure of Sr2IrO4, when holes or electrons are introduced, through Rh or La substitutions. At low dopings, the added carriers occupy the first available states, at bottom or top of the gap, revealing an anisotropic gap of 0.7eV in good agreement with STM measurements. At further doping, we observe a reduction of the gap and a transfer of spectral weight across the gap, although the quasiparticle weight remains very small. We discuss the origin of the in-gap spectral weight as a local distribution of gap values

    In-memory computing on a photonic platform

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors or Oxford Research Archive for Data (https://ora.ox.ac.uk).Collocated data processing and storage are the norm in biological computing systems such as the mammalian brain. As our ability to create better hardware improves, new computational paradigms are being explored beyond von Neumann architectures. Integrated photonic circuits are an attractive solution for on-chip computing which can leverage the increased speed and bandwidth potential of the optical domain, and importantly, remove the need for electro-optical conversions. Here we show that we can combine integrated optics with collocated data storage and processing to enable all-photonic in-memory computations. By employing nonvolatile photonic elements based on the phase-change material, Ge2Sb2Te5, we achieve direct scalar and matrix-vector multiplication, featuring a novel single-shot Write/Erase and a drift-free process. The output pulse, carrying the information of the light-matter interaction, is the result of the computation. Our all-optical approach is novel, easy to fabricate and operate, and sets the stage for development of entirely photonic computers.Engineering and Physical Sciences Research Council (EPSRC)Deutsche Forschungsgemeinschaft (DFG)European Research Council (ERC

    CO2 streams containing associated components—A review of the thermodynamic and geochemical properties and assessment of some reactive transport codes

    Get PDF
    AbstractModelling of the impact on storage of “ CO2-associated components” has rarely been addressed so far. This review, performed within the European research project CO2ReMoVe, exposes a selection of CO2 streams compositions coming from thermal power plants emissions and those injected in pilot sites part of the CO2ReMoVe project. It highlights the lack of data coming from laboratory experiments to describe properly the physical properties of some relevant gas mixtures. The geochemical impact of only 2 components (SO2 and H2S) is evidenced by some geochemical studies. Concerning the numerical modelling, four reactive transport codes (PHREEQC, SCALE2000, TOUGHREACT and COORES) were assessed. Actual limitations lie mainly in the capacity of calculating the physical properties of the whole set of gases (CO2–O2–SO2–N2–Ar–NOx–H2S–COS–CO–H2–HCl–NH3–CH4–C2H6–H2O). The new data acquired within on-going French projects will complete the knowledge of such complex gas mixtures behaviour

    Memristive Effects in Oxygenated Amorphous Carbon Nanodevices

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or t-aC, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-COx. Here, we examine the memristive capabilities of nanoscale a-COx devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-COx memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-COx cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.This work was funded by the EU Research & Innovation project CareRAMM, grant no. 30998

    Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior

    Get PDF
    The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (β-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered β-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of β-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. β-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma–Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped β-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. Statement of significance: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping β-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics

    Classic and spatial shift-share analysis of state-level employment change in Brazil

    Get PDF
    This paper combines classic and spatial shift-share decompositions of 1981 to 2006 employment change across the 27 states of Brazil. The classic shift-share method shows higher employment growth rates for underdeveloped regions that are due to an advantageous industry-mix and also due to additional job creation, commonly referred to as the competitive effect. Alternative decompositions proposed in the literature do not change this broad conclusion. Further examination employing exploratory spatial data analysis (ESDA) shows spatial correlation of both the industry-mix and the competitive effects. Considering that until the 1960s economic activities were more concentrated in southern regions of Brazil than they are nowadays, these results support beta convergence theories but also find evidence of agglomeration effects. Additionally, a very simple spatial decomposition is proposed that accounts for the spatially-weighted growth of surrounding states. Favourable growth in northern and centre-western states is basically associated with those states’ strengths in potential spatial spillover effect and in spatial competitive effect

    Effect of Geological Heterogeneities on Reservoir Storage Capacity and migration of CO 2 Plume in a Deep Saline Fractured Carbonate Aquifer

    Get PDF
    In a reservoir characterization study of the Hontomín deep saline aquifer, the impact of geological heterogeneities on reservoir storage capacity and the migration of the CO2 plume is explored. This work presents, for the first time, very long-term (up to 200 years) simulations of CO2 injection into the naturally fractured Sopeña Formation, of the lower Jurassic age, at Hontomín. CO2 injection was simulated as a dual permeability case with Eclipse compositional software. The matrix permeability of the carbonate reservoir is quite low (0.5 mD) and thus fluid flow through the fractures dominates. The reservoir is dissected by eight normal faults which limited its southeast extension and divided it into several segments. The effect of geological heterogeneities was tested through scenario-based modeling and variation of parameters characterizing heterogeneity within realistic limits based on other similar formations. This modeling approach worked well in Hontomín where the database is completely scarce. The plume migration, the reservoir storage capacity, and pressure, were each influenced in diverse ways by incorporating particular types of heterogeneities. The effect of matrix heterogeneities on reservoir storage capacity was substantial (by factors up to ~2.8×), compared to the plume migration. As the reservoir matrix permeability heterogeneity increased, the reservoir storage capacity markedly decreased, whilst an increase in porosity heterogeneity significantly increased it. The vertical gas migration in the homogeneous base case was relatively larger compared to the heterogeneous cases, and gas accumulated underneath the caprock via hydrodynamic trapping. It was also observed that, in heterogeneous cases, gas saturation in rock layers from top to bottom was relatively high compared to the base case, for which most of the gas was stored in the topmost layer. In contrast, the impact on storage capacity and plume movement of matrix vertical to horizontal permeability ratio in the fractured carbonate reservoir was small. The impact of the transmissibility of faults on reservoir pressure was only observed when the CO2 plume reached their vicinity

    Regional age structure, human capital and innovation - is demographic ageing increasing regional disparities?

    Get PDF
    Demographic change is expected to affect labour markets in very different ways on a regional scale. The objective of this paper is to explore the spatio-temporal patterns of recent distributional changes in the workers age structure, innovation output and skill composition for German regions by conducting an Exploratory Space-Time Data Analysis (ESTDA). Beside commonly used tools, we apply newly developed approaches which allow investigating the space-time dynamics of the spatial distributions. We include an analysis of the joint distributional dynamics of the patenting variable with the remaining interest variables. Overall, we find strong clustering tendencies for the demographic variables and innovation that constitute a great divide across German regions. The detected clusters partly evolve over time and suggest a demographic polarization trend among regions that may further reinforce the observed innovation divide in the future
    • …
    corecore