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Abstract.  

Computing with resistive-switching (memristive) memory devices has shown much recent progress and 

offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and 

memory, which limits the performance of conventional computer architectures. Due to their good 

scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could 

play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral 

amorphous carbon or t-aC, typically suffer from a low cycling endurance. A material that has proven to 

be capable of combining the advantages of elemental carbon-based memories with simple fabrication 

methods and good endurance performance for binary memory applications is oxygenated amorphous 

carbon, or a-COx. Here, we examine the memristive capabilities of nanoscale a-COx devices, in particular 

their ability to provide the multilevel and accumulation properties that underpin computing type 

applications. We show the successful operation of nanoscale a-COx memory cells for both the storage of 

multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-

16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and 

simultaneously store the computed result in the self-same a-COx cell, all using fast (sub-10 ns) and low-

energy (sub-pJ) input pulses. 
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1. Introduction 

To keep pace with ever increasing computational demands and data volumes, faster and more energy-

efficient memories are needed that can bridge the gap between fast but volatile DRAM and slow but non–

volatile storage systems such as magnetic hard disks (HDDs). This form of bridging type memory system 

is commonly known as storage-class-memory (SCM) [1]. Several possible candidates for SCM 

applications have been reported, in particular resistive-switching, or memristive, memories using phase-

change [2], metal-oxide [3] and, the focus of this work, amorphous carbon materials [4,5]. However, even 

if fast and reliable SCM systems were to be successfully developed, a more fundamental problem limits 

the performance of current computer systems, namely the need for the constant transfer of data between 

the central processor (CPU) and the memory in order to carry out logic and arithmetic operations. This 

physical separation between storage and memory, the so-called von–Neumann bottleneck, leads to 

limitations in computational speed and significant ‘wasted’ power; indeed, it has been estimated that over 

50% of the power of modern computing systems is used simply to move data around the system [6-8].  

 

One way to avoid the limitations caused by the von-Neumann bottleneck, or at least to ameliorate them, is 

carry out certain logic and arithmetic operations directly in the memory, assuming of course that the 

memory devices used can perform such operations. Fortunately, memristive devices have been shown to 

be capable of doing just this, with Boolean logic and arithmetic processing both having been successfully 

demonstrated in a variety of types [9,10]. The approach of using memristive devices for computation is 

one form of so-called memcomputing [11-14] which, as shown recently, can provide not only the same 

computational power as a universal Turing machine (describing all conventional digital computers), but 

also a range of additional and attractive properties including intrinsic parallelism, learning and adaptive 

capabilities [15].  

 

A promising material that shows memristive behaviour potentially suitable for use in memcomputing 

applications is tetrahedral amorphous carbon (ta-C), which is of particular interest due to its scalability, 

chemical stability, sustainability, fast switching speed and low power consumption [16-18]. Tetrahedral 

amorphous carbon can be reversibly switched between high resistance (HRS) and low resistance (LRS) 

states by applying electrical pulses [4, 19]. In the LRS state, electrical conduction is thought to occur 

through a conjugated network of sp2-bonded carbon clusters that form a conductive filament between the 

device electrodes [4, 20-22]. The formation of such a filament is suggested to be a consequence of 

localized thermally-driven sp3 to sp2 bond re–hybridization [14, 23]. Switching from the LRS to the HRS 

state requires a breaking of the conductive filament, which is usually achieved using fast electrical pulses 

with very short fall times [16, 17]. However, the number of times elemental carbon memory devices can 
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be repeatedly switched between LRS and HRS states is fairly limited, due primarily to the strong 

thermodynamical stability of the sp2-bonded state; essentially the conducting sp2 filament grows relatively 

easily and becomes hard to break after a relatively small number (tens to hundreds) of switching cycles 

[4, 16, 17]. To overcome this limitation, elemental amorphous carbon has recently been highly doped 

with oxygen to suppress the formation of C-C sp2 bonds, with such oxygenated amorphous carbon (a-

COx) memories demonstrating successful switching over many tens of thousands of cycles [18].  

 

The switching mechanism in a-COx memories is thought to be (mainly) electrochemical in nature (rather 

than electrothermal, as in the case of ta-C) and involve an electrochemical reduction-oxidation (redox) of 

carbon. To switch from the HRS to the LRS state, a voltage pulse is applied across the device electrodes 

and oxygen migrates towards the positive electrode, leading to the formation of strongly reduced and 

highly conductive sp2–rich filament(s). To switch back from the LRS to the HRS state, an opposite 

polarity voltage pulse is applied and oxygen migrates back towards the opposite electrode , helping to 

disrupt the sp2-bonded conductive filament (by inducing carbon sp3 hybridization –see [18] for further 

details of the switching mechanism). Switching in a-COx devices is essentially bipolar, in common with 

many other forms of resistive memories [3, 24, 25], whereas in ta-C devices switching is unipolar. 

 

To date however, investigations of a-COx based resistive-switching type devices has been limited 

primarily to non-volatile binary memory applications. Here, by contrast, we examine their memristive 

capabilities, in particular their ability to provide the multilevel and accumulation properties that underpin 

memcomputing type applications [10, 11, 13, 14, 26].  

 

2. Device fabrication and electrical testing methods 

The a-COx devices were fabricated on top of a 500 nm thick SiO2 electrical insulating layer, which was 

thermally grown on top of a silicon substrate. The bottom electrode (BE) consisted of a 60 nm thick 

tungsten layer, deposited on top of a 10 nm Ti adhesion layer. A further SiO2 layer (35 nm thick) was 

deposited on top of the bottom electrode and patterned with cylindrical openings into which the a-COx 

layer was deposited using magnetron sputtering from a solid carbon source in a mixed O2 and Ar 

atmosphere (the second SiO2 layer provides thermal and spatial confinement of the a-COx region and 

helps to prevent any significant outgassing of oxygen). Devices with a-COx regions of sizes (diameters) 

ranging from 50 nm to 200 nm were fabricated, with the a-COx layer itself being 18 nm thick. A top 

electrode (TE) consisting of a 100 nm Pt layer completes the basic device structure. On-chip, small-

footprint, resistors were fabricated in series with each device to reduce the flow of parasitic current 

through the device during switching events. Gold interconnects and pads are also deposited to allow for  
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Figure 1. (a) SEM top view of the top (TE), bottom (BE) and ground electrodes, which are used to 

electrically probe the a-COx cells (Rs is the on-chip series resistor). (b) STEM cross-sectional image of an 

exemplar a-COx cell, here having a diameter of 100 nm. (Reprinted with permission and modified from 

[18]; copyright Nature Publishing Group 2015). 

 

probe-testing of the devices. Electron microscope images of a complete device showing the overall cell 

and electrode configuration is given in Fig. 1(a); a cross-section of an individual cell is in Fig. 1(b). 

 

The devices have a GSSGSSG (G = ground, S = signal) layout, which allows for connection via two 

different electrical paths. One path is via the on-chip series resistor and is used during SET processes (i.e. 

when switching from high to low resistances). The other path does not include the series resistor and is 

used for RESET switching (i.e. when switching from low to high resistances). Voltage pulses for 

switching were supplied by an Agilent 81150A Arbitrary Waveform Generator and captured with a 

Tektronix TDS3054B oscilloscope. During the application of a voltage pulse the top electrode was 

grounded. The read out of the device resistance was carried at 0.2 V DC using a Keithley 2400 

sourcemeter. To contact the device chip pads, low capacitance Dual-Z probes (Cascade) were used. The 

capacitance of the device including the probing station was evaluated as being approximately 40 fF. The 

measurement of device characteristics at elevated temperatures was carried out by mounting the chip onto 

an invar block with in–built tungsten heaters, the temperature being recorded using a thermocouple and 

controlled by a Eurotherm temperature controller. 

 

3. Results and discussion 

3.1 Thermal annealing 

As discussed in the previous section, non-volatile memories based on amorphous carbon alone (ta-C 

memories) suffer from a relatively poor endurance (limited number of switching cycles) due to the 
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propensity of the sp2 filaments (formed during the switching to the LRS state) to grow in size during each 

switching cycle, leading to devices becoming ‘stuck’ in the SET (LRS) state [16, 17]. This is perhaps not 

surprising, since it is well-known that the electrical resistivity of ta-C films always decreases upon 

thermal annealing [21, 27, 28]. However, in the case of memories based on a-COx films, we might expect 

a different kind of thermal behavior, due to the role played by oxygen atoms in the switching process.  

 

To confirm (or otherwise disprove) the expectation of a different thermal dependence of resistance for a-

COx based devices than for ta-C films and devices, we first SET an a-COx device into the LRS state (R = 

3.6 kΩ) via an I-V sweep (see Fig. 2(a)) and then monitored the device resistance during various heating 

and cooling cycles. In Fig. 2(b) we show results for a device heated from 40◦C up to 300◦C (at 2◦C per 

minute), being held at 300◦C for 5 minutes, and then cooled down (at the same rate). Between 40◦C and 

236◦C the resistance decreases with temperature and shows, as previously observed [18], a thermally-

activated behaviour that can be well described by logR ∼ Ea·1/(kBT) with Ea being the activation energy 

for conduction (here Ea = 36 meV), kB the Boltzmann constant and T the temperature in Kelvin. Between 

236◦C and 300◦C however, the resistance of the a-COx device increases, with the increase being quite 

dramatic (three orders of magnitude) between 260◦C and 300◦C. Such increases of resistance with 

temperature are in stark contrast to that reported for films and devices based on elemental carbon, where 

the resistance decrease continuously with increasing temperatures [20, 21, 29, 30]. The resistance increase 

with increasing temperature in the a-COx case can be linked to a re-distribution of oxygen within the cell 

during heating, with the oxygen breaking up the low-resistivity C–C sp2 (graphite-like) rings and inducing 

high-resistivity C sp3 (diamond-like) hybridization (see [18]). Upon cooling down to 40◦C, the resistance 

of the a-COx devices followed again a logR ∼ Ea·1/(kBT) type behavior, with an activation energy in this 

case of Ea = 93 meV. The low value of the activation energy, together with the high resistance of the 

device, suggests that electrical transport mainly dominated by hopping between localised states [31-33].  

 

The findings of Fig. 2(b) indicate that, in addition to the electrochemical mechanism already identified 

[18] as the main driving force for the resistive switching process in a-COx based devices, there is most 

likely also a thermal component involved in the switching, most probably as a result of thermally-driven 

diffusion of oxygen ions. In any case, the results of Figs. 2(a) and 2(b) indicate that, by appropriate 

control of a-COx cell excitation conditions, it should be possible to access intermediate resistance levels, 

lying between the LRS and the HRS states, something that has not been reported to date. We explore this 

possibility in the next sections.  
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Figure 2. (a) I-V curve for an a-COx device (used to SET the device into LRS state for the measurements reported 

in (b). The voltage was measured across the device itself (i.e. with the voltage drop across the series resistor 

subtracted) and the inset shows the I-V curve with the current on a log scale.  (b) The variation of resistance as a 

function of annealing temperature for the device of (a) in the LRS state. 

 

3.2. Multilevel states 

To evaluate the possibility of accessing multilevel resistance states, a-COx devices were SET into the LRS 

state (via an I-V sweep), input excitations (voltage pulses) of various amplitudes and durations were 

applied, and the resulting device resistance measured. Typical results are shown in Fig. 3(a). Here, the 

device was first cycled six times between a partial RESET state, with a resistance of roughly (on average) 

1 MΩ, and the SET state by a sequence of (partial) RESET pulses having a duration of 7 ns and an 

amplitude of -2.1 V (top electrode grounded) and SET pulses of 60 ns duration and 3.2 V amplitude. 

Following this, a sequence of seven 7 ns/-2.5 V RESET pulses was applied, again interleaved with 60 

ns/3.2 V SET excitations, and a significantly higher HRS resistance of around (on average) 50 MΩ was 

achieved. The results of Fig. 3(a) show that multilevel states can indeed be accessed in a-COx devices, 

although in this case cycle-to-cycle variation in resistance is not insignificant. Nonetheless three distinct 

and readily distinguishable resistance levels are observed, equivalent to the storage of 1½ bits per cell 

(specifically, in this case, the 0-level (SET level) has resistances between 41 kΩ to 88 kΩ, the 1-level 

(partial RESET level) has resistances between 450 kΩ to 2.7 MΩ and the 2-level (full RESET) lies 

between 9.5 MΩ and to 59 MΩ). The multilevel resistance states are also stable with time, as can be seen 

in Fig. 3(b). Note that the results of Fig. 3(b) were for a different, larger device than that shown in Fig. 

3(a), but one that was programmed into the same resistance levels. Also note that the resistance states did 

not become unstable after 10,000 seconds, it is just that we stopped collecting data after this point. 
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Figure 3. (a) Cycling between multilevel resistance states in a-COx devices. Here three programmed states are 

shown, one LRS (0-level) state and two HRS (1-level and 2-level) states. The 0-level is accessed (programmed) 

using 60 ns/3.2 V pulses, while the 1-level and 2-level states are accessed using 7 ns/-2.1 V and 7 ns/-2.5 V pulses 

respectively. (b) Variation of the resistance of multilevel states as a function of time. Note that the results of (b) 

were for a different, larger device than that shown in (a) (but one that was programmed into the same resistance 

levels). Note also that the dashed lines in (a) and (b) are simply guides for the eye. 

 

3.3 Low energy accumulation-based memcomputing 

The exploitation of accumulation properties has previously been used successfully in phase-change 

memory type devices to carry out addition, subtraction, multiplication and division directly in high-order 

bases (e.g. base-10), as well as more complex arithmetic processing such as parallel factorization [10, 11, 

33]. Moreover, once such arithmetic computations are completed, the result is automatically stored in the 

device (which was in itself a non-volatile memory) that carried out the calculation. Thus, processing and 

memory can be carried out simultaneously by one and the same device, providing a form of computing-

in-memory, or memcomputing [13,14,15]. An alternative view of this kind of processing is as a form of 

non-von Neumann computing, in which the need (of a conventional von Neumann computer) to 

constantly transfer data between the processing unit and an external memory is removed, so potentially 

saving significant amounts of energy and potentially increasing computation speeds. 

 

The basic process of accumulation-based computing involves the excitation of a memory-type device by a 

predetermined number of identical electrical pulses. The excitation pulses are configured (in amplitude 

and duration) such that only after all pulses of the predetermined sequence have been applied does the 

resistance of the cell change significantly enough (either in transitioning from the HRS to the LRS state, 

or vice-versa) to cross a pre-set resistance decision threshold. The number of pulses required to pass 



8 

through the decision threshold determines the arithmetic base of the calculation. Thus, for base-n 

operation, a decision threshold is set between the resistance levels achieved after the input of (n-1) and n 

pulses. Note that, unlike in the case for multilevel storage, accumulation does not require that all 

individual resistance levels are distinguishable, merely that it is possible to (reliably and repeatably) 

determine that the pre-set resistance threshold has been reached/passed. This in turn requires that (or at 

least is easier to do if) the cell resistance changes monotonically as the number of input pulses increases, 

and that the ‘window’ between the resistances of the cell after the input of (n-1) and n input pulses is 

sufficiently large. 

 

To determine if a-COx memory-type devices possess properties making them suitable for accumulation 

based computing, we first SET a device into the LRS state via an I-V sweep (in this case leading to a SET 

resistance of ~2.5 kΩ). We then applied a series of short (8 ns), low voltage (-0.9 V) input pulses, 

measuring the resistance after each applied pulse. The results are shown in Fig. 4(a), here for the case of 

30 successive input pulses. The variation in resistance with pulse number displays a sigmoidal-like 

response, which is well-suited to the implementation of an accumulator [10]. Moreover, between pulses 

13 and 16 the resistance changes are well separated, allowing the ready placement of a suitable detection 

threshold. For example we could, as shown in Fig. 4(a), place the decision threshold between state-15 and 

state-16 (since the resistance window between those states is relatively large) and this would yield a base-

16, or hexadecimal, accumulator. Such an accumulator would also have relatively low energy 

consumption, since the energy consumed per input pulse is around the pJ level or lower (see Fig. 4(b)). 

 

Methods for carrying out specific arithmetic operations (addition, subtraction, multiplication, division 

etc.) using such an accumulator have been described in previous work (see e.g. [10, 11, 34]), so are not 

repeated in detail here. However, for completeness and context we consider the process of hexadecimal 

addition using a response of the form shown in Fig. 4(a). For example, should we wish to add 710 and 1110 

(i.e. 7 + B in hexadecimal notation) we would first input 7 pulses (the augend of the addition we wish to 

carry out) to an a-COx cell having the accumulator response of Fig. 4(a); this would take the cell to state-

7 on the R vs. pulse number curve. We would then input pulses equal in number to the addend (1110). 

However, in this case after receipt of pulse #9 of this addend sequence of 11 pulses, the cell resistance 

would cross the pre-set decision threshold (set between state-15 and state-16), this would be detected (by 

additional circuitry) and the cell would be SET back to the LRS state before the remaining addend pulses 

(i.e. pulses #10 and #11) were inputted. After completion of this whole process the a-COx cell would be 

in state-2, and one SET process would have been carried out. By this means the cell has computed the 

addition 7 + B in hexadecimal and the result is given by the number of times the cell has been SET (due 
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to passing the decision threshold) along with the number stored in the cell itself. To access this stored 

number we input further identical pulses to the cell until it again crosses the decision threshold. Fourteen 

(14) pulses would be needed in this case, which is the (base-16) complement of the number we require 

(2). Thus 710 + 1110 = 1810 (or in hexadecimal, 7 + B = 12). Note that although the readout of the number 

stored in an accumulation cell by inputting additional pulses essentially ‘erases’ that cell, in a computing 

application the accumulation cell would be storing intermediate results of a calculation and its state would 

not necessarily need to be read during such calculations (e.g. if we add say 2 + 3 + 4 using an 

accumulation cell, we do not need to readout the cell resistance at any point during this calculation). On a 

more general level we also note that the data stored in a cell is not in fact ‘lost’ when a cell is read, since 

the number of pulses needed to take a cell to threshold during reading provides a copy (albeit in the form 

of the complement of the stored number) of that stored data, which could be easily written back to the 

same (or a different cell) should this be required. 

 

 

Figure 4. (a) An accumulator-type response in an a-COx memory cell obtained by the input of a series of identical   

-0.9 V/ 8 ns pulses. Also shown is position of a (resistance) decision threshold for use as a base-16 accumulator. (b) 

The energy consumed per pulse (first 20 pulses only shown) for the accumulator of (a).   

 

To carry out the accumulator based computation of the hexadecimal addition (716 + B16) as above requires 

additional circuitry for both the detection of the crossing of the (resistance) decision threshold, the 

recovery of a number from its complement and the carry-over operation. However, such circuitry is not 

necessarily complicated; for example crossing of the decision threshold could be achieved by standard 

circuits used for resistive memory readout, in tandem with a comparator, while the generation of a 

number from its complement can be achieved by using a complementary accumulator cell (see [10]). The 

carry-over can be implemented simply by passing (writing) the carry-over(s) to a second cell representing 
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the next highest power in the base (see e.g. [35]). Moreover, we should not lose sight of the fact that the 

major benefit of using the accumulator approach is that a single nanoscale a-COx memory cell has, in the 

above example, carried out the core part of the task of adding two hexadecimal numbers and, importantly, 

stored the result in the self-same cell. Furthermore the process is relatively fast (we used 8 ns pulses here, 

but faster operation could no doubt be achieved), fairly energy efficient (~ 1 pJ per pulse) and easily 

parallelised (for the provision of multi-integer or fixed-point numbers). Thus, it would seem that a-COx 

memory-type devices are potentially well-suited to computing-in-memory, or memcomputing type 

operations. In comparison, the addition of hexadecimal numbers by conventional approaches would 

require a 4-bit full adder comprising around 20 logic gates in total, and would of course not provide the 

beneficial feature of simultaneous, co-located storage of the result. 

 

While we have above used the example of an accumulator arranged for base-16 or hexadecimal operation, 

other bases can of course be implemented by using different input pulse amplitudes and/or durations. 

Indeed, since for a reliable implementation of accumulation-based arithmetic it would be important to 

achieve excellent repeatability in terms of the accumulator switching (i.e. the number of pulses required 

to reach the threshold should not vary either in a single cell from calculation to calculation or between 

cells in a large-scale array), then the use of accumulators designed to work with lower-order bases is 

likely to be more practicable (as was shown in the case of phase-change accumulators [34]).   

 

In addition we note that programming the accumulator response as a form of gradual RESET (i.e. moving 

from the LRS to the HRS state) not only unlocks the high switching speeds inherent to the RESET 

process, but leads to a reduction in energy consumption as a computation proceeds. This is due to the 

decreasing current flow with increasing pulse number, as shown in Fig. 5. Indeed, after around 20 input 

pulses the switching current is here comparable to the noise in the measurement circuit. Of course for 

reliable computation using this gradual RESET approach, the intermediate resistances need to exhibit a 

certain degree of stability. Since, as we have shown in Fig. 3(b), the intermediate resistance states 

obtained for the a-COx cell programmed into multilevel states were stable, then it is reasonable to assume 

that the intermediate states in the accumulator response are also stable. However, it should also be pointed 

out that it is not the primary aim for the accumulation cell to provide long-term memory, rather that it 

provides in-situ storage of intermediate results during arithmetic calculations, so avoiding the need to 

transfer such intermediate results to external (or cache) memory.  
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Figure 5. (a) The switching current in the a-COx accumulator of Fig. 4(a) for input pulse #1, #11 and #20 (inset 

shows the applied voltage pulse).  (b) The variation of (maximum) current during accumulator switching as a 

function of input pulse number. 

 

4.  Conclusions 

In summary, we have shown that simple two-terminal, nanoscaled, oxygenated amorphous carbon, or a-

COx, devices, in addition to their previously demonstrated non-volatile binary memory functionality, 

possess memristive type capabilities including the ability to provide the multilevel and accumulation 

properties that underpin computing type applications. Specifically we successfully demonstrated the 

storage of 3-levels (1½ bits) per individual cell, as well as an accumulator-like response suited to the 

provision of arithmetic processing. We implemented a base-16, or hexadecimal, accumulator and showed 

how such a device can carry out hexadecimal addition and simultaneously store the resulting sum in a 

single a-COx cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses. 
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