6,437 research outputs found

    Hydrophilic or hydrophobic coating of whey protein aerogels obtained by supercritical-CO2-drying: Effect on physical properties, moisture adsorption and interaction with water and oil in food systems

    Get PDF
    Aerogel monoliths, prepared by water-to-ethanol substitution and supercritical-CO2-drying of whey protein hydrogels, were dip-coated with hydrophilic (alginate, AL; agar, AG) or hydrophobic (ethylcellulose, EC) polymers. AL coating induced aerogel collapse, due to solvent absorption. AG and EC rapidly set onto aerogel surface, forming layers of 65 and 100 μm thickness, respectively. While AG-coating induced 20% volume shrinkage, 25% apparent density increase and 75% firmness increase, EC-coating maintained the original aerogel structure. Upon exposure to 100% equilibrium relative humidity, aerogels showed moisture uptake in the order AG-coated>uncoated>EC-coated. When immersed in water or oil, the AG-coated aerogel showed an uptake respectively 40 and 60% lower than the uncoated control. The oil barrier capacity of AG-coated aerogel was also demonstrated in a lipid food system (stearin-oil mixture). Although not reducing oil uptake, EC-coating reduced water uptake by 30% and its water barrier properties were demonstrated upon immersion in an aqueous food system (water-flour batter). Industrial relevance: The obtained results indicate tailored coating as a feasible strategy to enhance aerogel functionality in food. This would open further possibilities, including the use of aerogels as smart food ingredients able to modulate aroma and bioactive delivery both in the food product and during digestion. These findings are thus important in supporting the industrial development of aerogel-based ingredients with customized functionalities

    Study of the Effect of L-PBF Technique Temporal Evolution on Microstructure, Surface Texture, and Fatigue Performance of Ti gr. 23 Alloy

    Get PDF
    Titanium alloys are widely used in various technological fields due to their excellent performance. Since the early stages of the 3D printing concept, these alloys have been intensively used as materials for these processes. In this work, the evolution of the performance of the 3D printing process has been studied by analysing the microstructure and the mechanical properties, fatigue and tensile, of the Ti gr. 23 alloy produced by two different models of Concept Laser M2 Cusing machines (an old model and a more recent one). The process parameters recommended by the manufacturer were adopted for each machine. Both microstructural and surface texture characterisations were carried out to better correlate the differences with the production process technique. For the same purpose, tensile tests and microhardness profiles were obtained, while the dynamic mechanical properties were evaluated by means of fatigue tests aimed at determining the fatigue limit of the material using a staircase approach. The mechanical tests were carried out on specimens with three different orientations with respect to the building platform, using two different SLM techniques. The fatigue behaviour was then analysed by evaluating the fracture surfaces and, in particular, the crack nucleation sites. By comparing the calculated fatigue values with the results of local fatigue calculations, an estimate of the residual stresses near the crack nucleation site was obtained. The results showed that the specimens produced on a newer machine had lower roughness (about 10%), slightly higher ductility, and a higher fatigue limit (10–20 MPa) compared to the specimens produced with the same material but on older equipment

    Surface composition of BaTiO3/SrTiO3(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy

    Full text link
    We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were investigated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {\guillemotright}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO3 layers, especially in view of their integration in devices.Comment: In press in J. Appl. Phy

    Crystallographic structure of ultrathin Fe films on Cu(100)

    Full text link
    We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100) using scanning tunneling microscopy. The local bcc structure provides a straightforward explanation for their frequently reported outstanding magnetic properties, i.e., ferromagnetic ordering in all layers with a Curie temperature above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above 4 ML film thickness is unexpected in terms of conventional rules of thin film growth and stresses the importance of finite thickness effects in ferromagnetic ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0

    The use of ALD and PVD coatings as defect sealants to increase the corrosion resistance of thermal spray coatings

    Get PDF
    Thermal spray coatings are widely used to improve the surface properties of materials, in particular the wear and oxidation resistance. Nevertheless, the corrosion resistance is slightly increased due to the fact that this type of coatings present some internal defects (pores, cracks) that allow the corrosive media to penetrate up to the substrate, that undergoes to corrosion degradation. The amount of these defects is strongly influenced by both the deposition technique and the material deposited. The aim of this work is to seal the internal porosities of the thermal spray coatings by the use of both PVD and ALD coatings or the combination of the two. The thermal spray coating analysed in this work is a pure alumina coating, deposited by Air Plasma Spray (APS) technique, that has been sealed with CrN coating, deposited by PVD (Physical Vapour Deposition) technique, and/or TiO2 coatings, deposited by ALD (Atomic Layer Deposition). The substrate used is a common medium C steel. The samples were then characterized in order to determine the microstructure (SEM+EDXS, light microscope) and the chemical composition (Rf-GDOES elemental profiling), that is important to determine the depth of penetration of the PVD and/or ALD coating inside the thermal spray deposit. Afterwards, a detailed electrochemical characterization in 3,5wt% NaCl aqueous solution was performed to verify the efficiency of the sealant treatment. In detail, a monitor in function of the time of the OCP potential was performed up to 24h of immersion time. In addition, potentiodynamic tests were performed using a 3 electrode electrochemical cell (CE: Pt wire, RE: Ag/AgCl). The same tests were then performed on the same samples that present an artificial defect produced by Rf-GDOES. The main goal of these tests is to determine the maximum depth of a defect that can allow the corrosive media to penetrate the thermal spray coating. Preliminary results showed that the use of PVD and ALD coatings as sealants can reduce the permeation of the corrosive media on the substrate

    The Use of Thin Films as Defect Sealants to Increase the Corrosion Resistance of Thermal Spray Coatings

    Get PDF
    Thermal spray-coated components are widely used as wear-resistant coatings in many applications. However, these coatings have high levels of discontinuities that affect the corrosion resistance of the coated system. To reduce this problem, these coatings are usually sealed with liquid sealants (metals, organic or inorganic). The aim of this work is to seal the surface discontinuities of thermal-sprayed coatings using PVD and/or ALD coatings. To this end, CrN (arc deposition PVD) and TiO2 (ALD) coatings were deposited on thermal-sprayed alumina coatings. The samples produced were then analysed in both cross-sectional and planar views to detect the possible permeation of the thin film coatings into the thermal spray defects. Rf-GDOES measurements were performed to detect the very thin ALD deposit on the surface. The corrosion resistance of the sealed coatings was verified with immersion tests, wherein the OCP was monitored for 24 h, and potentiodynamic tests were performed after 15 min and 24 h immersions. The results showed that the thin films were not able to block the permeation of corrosive media, but they could reduce the permeation of corrosive media with a beneficial behaviour on corrosion resistance

    Albumin Protein Impact on Early-Stage In Vitro Biodegradation of Magnesium Alloy (WE43)

    Get PDF
    Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks’ simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks’ solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks’ solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks’ solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer

    A sintaxe em gramáticas de português do século XIX "à l’usage des français"

    Get PDF
    RESUMO O trabalho que se apresenta constitui um estudo de matérias sintáticas de gramáticas de português como língua estrangeira (PLE) do século XIX, dirigidas a um público-alvo francês: - A matéria sintática em apreço foca um conjunto de conceitos relativamente estáveis no quadro das ideias linguísticas, organizados nos seguintes grupos em lógica, ora de confronto, ora de complementaridade: sintaxe e/ou construção; proposição e frase; regime, complemento e subordinação. - As referidas gramáticas de PLE constituem o corpus de obras metalinguísticas de português L2, editadas entre o ano VIII (1799-1800) do calendário republicano francês e 1894, que foi possível recensear até ao momento. - Com respeito ao público-alvo, considera-se a sua relação com os textos metalinguísticos no que toca a procedimentos e metodologias da descrição gramatical que contemplam a proximidade estrutural das línguas alvo (português) e materna (francês)

    What is a fish? The life and legend of David L.G. Noakes

    Get PDF
    David Lloyd George Noakes (1942–2020) is best known for his insatiable curiosity, his quick wit and dry sense of humor, his scientific contributions to the field of animal behaviour, and his ability to form and maintain long-lasting connections. His research interests were vast but remained grounded in early life history, behaviour, social behaviour, the evolution of behaviour, behavioural genetics, and evolutionary ecology. David had a remarkable ability to establish and maintain strong connections within the international academic community. David was also internationally recognized for his numerous contributions as a scientific editor, promoting accessibility to the international community that he served. We memorialize David’s legacy in this tribute article, ensuring that his accomplishments and the momentous impact he had on the scientific community are not soon forgotten

    Caratterizzazione microstrutturale ed elettrochimica di rivestimenti per applicazioni in campo energetico

    Get PDF
    Il miglioramento delle prestazioni dei rivestimenti spessi nel campo energetico è di notevole importanzain quanto le tecnologie attualmente a disposizione sono molto costose e presentano problemi di diversanatura, principalmente nel campo della resistenza alla corrosione. Il materiale di substrato sceltoè un acciaio ASTM 387 grado 22, su cui saranno depositati rivestimenti in Nichel chimico, riporti metallicio cermet depositati con tecnologia HVOF (High Velocity Oxygen Fuel) e rivestimenti ceramici depositaticon tecnica APS (Arc Plasma Spray). I sistemi rivestiti sono composti da: substrato + rivestimento, substrato +interlayer + rivestimento. Alcuni di questi sistemi sono stati sigillati con resina epossidica.Le varie combinazioni di rivestimenti sono state caratterizzate tramite microscopia ottica, misuredi microdurezza e analisi SEM con sonda EDXS, per studiare microstruttura e composizione chimica.Per testare il comportamento a corrosione dei rivestimenti sono state eseguite misure di polarizzazionepotenziodinamica in soluzione simulante un ambiente simile a quello delle centrali geotermiche. I risultatihanno messo in evidenza un effetto barriera, fornito dai rivestimenti studiati in questo lavoro
    corecore