26 research outputs found

    Association of the Gut Microbiota with the Host's Health through an Analysis of Biochemical Markers, Dietary Estimation, and Microbial Composition

    Get PDF
    This research was funded by Centro Tecnológico para el Desarrollo Industrial (CDTI) through the program Consorcio de Investigación Empresarial Nacional (Programa CIEN, BIOFOOD Project) and by CIBERobn (Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CB12/03/30002).This study aims to analyze the relationship between gut microbiota composition and health parameters through specific biochemical markers and food consumption patterns in the Spanish population. This research includes 60 Spanish adults aged 47.3 ± 11.2 years old. Biochemical and anthropometric measurements, and a self-referred dietary survey (food frequency questionnaire), were analyzed and compared with the participant's gut microbiota composition analyzed by 16s rDNA sequencing. Several bacterial strains differed significantly with the biochemical markers analyzed, suggesting an involvement in the participant's metabolic health. Lower levels of Lactobacillaceae and Oscillospiraceae and an increase in Pasteurellaceae, Phascolarctobacterium, and Haemophilus were observed in individuals with higher AST levels. Higher levels of the Christensenellaceae and a decrease in Peptococcaceae were associated with higher levels of HDL-c. High levels of Phascolarctobacterium and Peptococcus and low levels of Butyricicoccus were found in individuals with higher insulin levels. This study also identified associations between bacteria and specific food groups, such as an increase in lactic acid bacteria with the consumption of fermented dairy products or an increase in Verrucomicrobiaceae with the consumption of olive oil. In conclusion, this study reinforces the idea that specific food groups can favorably modulate gut microbiota composition and have an impact on host's health

    Phenolic compounds reduce the fat content in caenorhabditis elegans by affecting lipogenesis, lipolysis, and different stress responses

    Get PDF
    Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders

    Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPAR gamma

    Get PDF
    Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPAR¿. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis

    Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of wildlife as a brucellosis reservoir for humans and domestic livestock remains to be properly established. The aim of this work was to determine the aetiology, apparent prevalence, spatial distribution and risk factors for brucellosis transmission in several Iberian wild ungulates.</p> <p>Methods</p> <p>A multi-species indirect immunosorbent assay (iELISA) using <it>Brucella </it>S-LPS antigen was developed. In several regions having brucellosis in livestock, individual serum samples were taken between 1999 and 2009 from 2,579 wild bovids, 6,448 wild cervids and4,454 Eurasian wild boar (<it>Sus scrofa</it>), and tested to assess brucellosis apparent prevalence. Strains isolated from wild boar were characterized to identify the presence of markers shared with the strains isolated from domestic pigs.</p> <p>Results</p> <p>Mean apparent prevalence below 0.5% was identified in chamois (<it>Rupicapra pyrenaica</it>), Iberian wild goat (<it>Capra pyrenaica</it>), and red deer (<it>Cervus elaphus</it>). Roe deer (<it>Capreolus capreolus</it>), fallow deer (<it>Dama dama</it>), mouflon (<it>Ovis aries</it>) and Barbary sheep (<it>Ammotragus lervia</it>) tested were seronegative. Only one red deer and one Iberian wild goat resulted positive in culture, isolating <it>B. abortus </it>biovar 1 and <it>B. melitensis </it>biovar 1, respectively. Apparent prevalence in wild boar ranged from 25% to 46% in the different regions studied, with the highest figures detected in South-Central Spain. The probability of wild boar being positive in the iELISA was also affected by age, age-by-sex interaction, sampling month, and the density of outdoor domestic pigs. A total of 104 bacterial isolates were obtained from wild boar, being all identified as <it>B. suis </it>biovar 2. DNA polymorphisms were similar to those found in domestic pigs.</p> <p>Conclusions</p> <p>In conclusion, brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an important threat for domestic pigs. By contrast, wild ruminants were not identified as a significant brucellosis reservoir for livestock.</p

    Role of cardiotrophin-1 on adipocyte liposysis and adipokine production, intestinal sugar uptake and the regulation of circadians clocks

    Get PDF
    In the last years, several studies have pointed out that CT-1 might play a key role in the regulation of body weight and fat and glucose metabolism, with potential applications for treatment of obesity and insulin resistance. In the present work, we demonstrated that CT-1 stimulates lipolysis in vitro and in vivo through the activation of the main lipases and lipid droplet associated proteins. CT-1 treatment stimulated basal glycerol and free fatty acid release in a concentration and time-dependent manner in 3T3-L1 adipocytes. This lipolytic action of CT-1 is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased ATGL content in adipose tissue. Our results suggest that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects. In addition we observed that CT-1 inhibits the production of adipocyte-secreted hormones implicated in obesity and insulin resistance with pro-inflammatory properties such as leptin, resistin and visfatin in cultured adipocytes, whereas promotes the gene expression and secretion of apelin. Moreover, acute CT-1 administration to obese mice reduced leptin and resistin expression in WAT. Thus, the present study demonstrates the ability of rCT-1 to modulate the production of adipokines in vitro and in vivo, suggesting that the regulation of the secretory function of adipocytes could be also involved in the metabolic actions of this cytokine. Furthermore, the present investigation has revealed the ability of CT-1 to inhibit intestinal sugar absorption in vitro and in vivo. Mechanistic studies performed in Caco-2 cells showed that the reduction of &#945;-Methyl-D-glucoside uptake induced by CT-1 is accompanied by the downregulation of the expression of the SGLT-1 co-transporter at the apical membrane of the cells. These effects of CT-1 on intestinal sugar absorption could contribute to the hypoglycemic and anti-obesity properties of this cytokine. Finally, the present study aimed to characterize the potential role of CT-1 in the regulation of metabolic rhythms. Interestingly, the circadian rhythmicity of oxygen consumption rate (VO2) was totally disrupted in old CT-1 deficient (CT-1-/-) obese mice (12 months). Moreover, the lack of CT-1 also induced remarkable alterations in Bmal1 and Cry mRNA levels in young CT-1 null mice, which become also evident for Clock and Per2 in CT-1-/- 12-month-old mice. Moreover, treatment with CT-1 attenuated the drop in adipose Clock mRNA observed in ob/ob mice. Furthermore, in humans the 24-h profile of CT-1 plasma levels showed daytime variations characterized by a pronounced rise during the night period (from 2:00 to 8:00 am), with the acrophase at 8:00 am. Interestingly, the circadian rhythmicity of CT-1 observed in normal weight subjects was lost in overweight/obese individuals. All these observations suggest a potential role of CT-1 as a peripheral regulator of metabolic circadian rhythms

    Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice

    No full text
    Aims/hypothesis Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of diferent metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an efective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the efectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat β-glucans (BGC), could increase the efcacy of this probiotic on the regulation of glucose and lipid metabolism. Methods Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3–V4 region of the 16S rRNA gene from faecal samples of each group was performed, and diferential abundance for family, genera and species was analysed by ALDEx2R package. Results Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the efect of the high glucose by modulating the insulin–IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic signifcantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating efect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the efect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin–IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinfammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. Conclusions/interpretation Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fght insulin resistance, diabetes and obesity

    Phenolic compounds reduce the fat content in caenorhabditis elegans by affecting lipogenesis, lipolysis, and different stress responses

    No full text
    Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders

    Comparison of Multiple-Locus Variable-Number Tandem-Repeat Analysis with Other PCR-Based Methods for Typing Brucella suis Isolates▿

    Get PDF
    Multiple-locus variable-number tandem-repeat analysis (MLVA), multiplex PCR, and PCR-restriction fragment length polymorphism analysis were compared for typing Brucella suis isolates. A perfect concordance was obtained among these molecular assays. However, MLVA was the only method to demonstrate brucellosis outbreaks and to confirm that wildlife is a reservoir for zoonotic brucellosis

    Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPAR gamma

    No full text
    Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPAR¿. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis

    Models integrating genetic and lifestyle interactions on two adiposity phenotypes for personalized prescription of energy-restricted diets with different macronutrient distribution

    Get PDF
    Aim: To analyze the influence of genetics and interactions with environmental factors on adiposity outcomes [waist circumference reduction (WCR) and total body fat loss (TFATL)] in response to energy-restricted diets in subjects with excessive body weight. Materials and Methods: Two hypocaloric diets (30% energy restriction) were prescribed to overweight/obese subjects during 16 weeks, which had different targeted macronutrient distribution: a low-fat (LF) diet (22% energy from lipids) and a moderately high-protein (MHP) diet (30% energy from proteins). At the end of the trial, a total of 201 participants (LF diet = 105; MHP diet = 96) who presented good/regular dietary adherence were genotyped for 95 single nucleotide polymorphisms (SNPs) previously associated with weight loss through next-generation sequencing from oral samples. Four unweighted (uGRS) and four weighted (wGRS) genetic risk scores were computed using statistically relevant SNPs for each outcome by diet. Predictions of WCR and TFATL by diet were modeled through recognized multiple linear regression models including genetic (single SNPs, uGRS, and wGRS), phenotypic (age, sex, and WC, or TFAT at baseline), and environment variables (physical activity level and energy intake at baselines) as well as eventual interactions between genes and environmental factors. Results: Overall, 26 different SNPs were associated with differential adiposity outcomes, 9 with WCR and 17 with TFATL, most of which were specific for each dietary intervention. In addition to conventional predictors (age, sex, lifestyle, and adiposity status at baseline), the calculated uGRS/wGRS and interactions with environmental factors were major contributors of adiposity responses. Thus, variances in TFATL-LF diet, TFATL-MHP diet, WCR-LF diet, and WCR-MHP diet were predicted by approximately 38% (optimism-corrected adj. R2 = 0.3792), 32% (optimism-corrected adj. R2 = 0.3208), 22% (optimism-corrected adj. R2 = 0.2208), and 21% (optimism-corrected adj. R2 = 0.2081), respectively. Conclusions: Different genetic variants and interactions with environmental factors modulate the differential individual responses to MHP and LF dietary interventions. These insights and models may help to optimize personalized nutritional strategies for modeling the prevention and management of excessive adiposity through precision nutrition approaches taking into account not only genetic information but also the lifestyle/clinical factors that interplay in addition to age and sex
    corecore